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Abstract

Low-level Analysis of High-density Oligonucleotide Array Data: Background,

Normalization and Summarization

by

Benjamin Milo Bolstad

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Terence P. Speed, Chair

Microarray experiments are currently widely applied in many areas of biomedical research. The

Affymetrix GeneChip® system is a commercial high-density oligonucleotide microarray platform

which measures gene expression using hundreds of thousands of 25-mer oligonucleotide probes.

This dissertation addresses how probe intensity data from GeneChips® are processed to produce

gene expression values and shows how better pre-processing leads to gene expression measures,

that after further analysis, yield biologically meaningful conclusions. An ideal expression measure

is one which is both precise and accurate.

A three-stage procedure for producing an expression measure is proposed. For each of the three

stages, background correction, normalization and summarization, numerous methods are developed

and assessed using spike-in datasets. Bias and variance criteria are used to compare the different

methods of producing expression values. The methods are also judged by how well they correctly

identify the differential genes. The background method has a significant effect on the bias, which

is reduced, and the variability, which is usually increased. Non-linear normalization methods are

found to reduce the non-biological variability between multiple arrays without introducing any sig-

nificant bias. Robust multi-chip linear models are found to fit the data well and provide the recom-

mended summarization method.

The summarization methodology is extended to produce test statistics for determining differen-

tial genes. These test statistics perform favorably at correctly detecting differential genes when



2

compared with alternative methods based on expression values. Finally, using case study data, no

statistical benefit is found for using arrays hybridized with mRNA from a pool rather than from a

single biological source.

Professor Terence P. Speed
Dissertation Committee Chair



i

To Judy

To My Parents



ii

Contents

List of Figures vi

List of Tables x

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 DNA and Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Affymetrix GeneChip® Technology . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Some Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Chip Manufacturing Process . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Sample Preparation and Hybridization . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Scanning and Image Quantification . . . . . . . . . . . . . . . . . . . . . 9

1.2.5 Computing Expression Measures for High-density Oligonucleotide Data . . 10

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Two Important Diagnostic Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 MA plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Receiver Operating Characteristic curves . . . . . . . . . . . . . . . . . . 14

2 Background Correction and Signal Adjustment 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



iii

2.2 Background Correction / Signal Adjustment Methods . . . . . . . . . . . . . . . . 17

2.2.1 RMA Convolution Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Methods Proposed by Affymetrix . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Correcting Low Intensity Signals: LESN . . . . . . . . . . . . . . . . . . 23

2.2.4 Standard Curve Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Comparing Background/Signal Adjustment Methods . . . . . . . . . . . . . . . . 25

2.3.1 Comparing Computed Expression Values with Known Concentration . . . 28

2.3.2 Comparing Computed Fold-change with Expected Fold-change . . . . . . 30

2.3.3 Composite MA-plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Detecting Differential Expression: ROC Curves . . . . . . . . . . . . . . . 34

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Normalization 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Normalization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Complete Data Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Composite Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Probe-level, Probeset-level and Expression-level Normalization . . . . . . . . . . . 47

3.3.1 Probeset-level Quantile Normalization . . . . . . . . . . . . . . . . . . . . 48

3.4 Comparing Normalization Methods . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Assessing Variance and Bias of Non-diffential Probesets . . . . . . . . . . 51

3.4.2 Assessing Bias and Variability of Differential Probesets . . . . . . . . . . 54

3.4.3 Impact of Normalization on the Ability to Detect Differential Expression . 55

3.4.4 Speed of complete data methods . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Summarization 59



iv

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Single-chip Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Multi-chip Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Assessing the Impact of Summarization Methods on Expression Values and
Fold-change Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Using Probe-level Models to Detect Outlier Probes and Arrays at the Probeset-
level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Expression Measures as a Three-step Process 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Analyzing the Spike-in Data . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.2 Analyzing the Dilution/Mixture Data . . . . . . . . . . . . . . . . . . . . 85

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Probe-Level Model Based Test Statistics for Detecting Differential Expression 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Methods and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Comparing PLM based test statistics with probeset summary based test
statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 Moderating the PLM test statistics . . . . . . . . . . . . . . . . . . . . . . 101

6.3.3 Fitting the treatment effect model . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



v

7 A Study of the Effects of Pooling on Gene Expression Estimates 105

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2.1 Animal Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.2 Tissue Collection and RNA Preparation . . . . . . . . . . . . . . . . . . . 107

7.2.3 Screening of mRNA by Affymetrix GeneChip Arrays . . . . . . . . . . . . 107

7.2.4 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3.2 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.3 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.4 Detecting Differential Expression . . . . . . . . . . . . . . . . . . . . . . 118

7.3.5 Temporal Effects in Experimental Procedure . . . . . . . . . . . . . . . . 118

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A Datasets 123

A.1 Affymetrix HGU95A Spike-in dataset . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Affymetrix HGU133A Spike-in Dataset . . . . . . . . . . . . . . . . . . . . . . . 123

A.3 GeneLogic AML Spike-in Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.4 GeneLogic Tonsil Spike-in dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.5 GeneLogic Dilution/Mixture dataset . . . . . . . . . . . . . . . . . . . . . . . . . 127



vi

List of Figures

1.1 Multiple probes interrogating the sequence for a particular gene make up probesets. 5

1.2 Pefect Match and Mismatch Probes. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The Affymetrix GeneChip® is constructed using a photolithographic process. A
series of masks are used to deprotect different locations and base by base oligonu-
cleotides of length 25 are built in parallel. . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Typical target sample preparation for Eukaroytic organisms. . . . . . . . . . . . . 8

1.5 During the hybridization process cRNA binds to the array. . . . . . . . . . . . . . 8

1.6 A section of a scanned image for chip. Image quantification takes place by gridding. 9

1.7 Comparing PM intensities from two replicate arrays By either plotting one array
against the other or by using an MA-plot. . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 An ROC curve comparing three tests. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Smoothed histograms of the probe intensities for a number of arrays from the HGU95A
spike-in dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 A concentration dependent pattern in expression values and a desire for linear re-
lationship between expression value and concentration yields a concentration de-
pendent adjustment. On the left expression values versus concentration values for
spike-in probesets from the HGU95A dataset are plotted. A different symbol is used
for each probeset. On the right is the adjustment required to linearize the expression
value concentration relationship. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 The estimates γ̂ relate very well with concentration, particularly in the low concen-
trations. On the left the spike-in probesets are labeled by a number representing the
true concentration. Non-spikeins are represented by black points. . . . . . . . . . . 27



vii

2.4 Plot of observed expression versus spike-in concentration on the log-scale, with
each spike-in probeset represented using a different symbol. The curvilinear rela-
tionship indicated by the no background case is typical of corrections which ignore
the MM information. The more linear relationship observed in the standard curve
adjustment is more typical of cases which make use of MM information. . . . . . . 29

2.5 Plots of observed versus expected fold-change for expression measures computed
using no background and when using the standard curve adjustment. The 45 degree
line is indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Composite MA-plots for: no background, convolution, MAS5/Ideal Mismatch and
the Standard Curve Adjustment. Low variability of the non-differential probesets
is desirable. Additionally we want the estimated fold-changes to accurately reflect
the truth. The spike-in probesets are labeled by concentration. The non-differential
probesets are plotted as points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 ROC curves based on fold-change. The ideal curve would reach 1.0 on the vertical
(all true positives identified) when at 0 on the horizontal (no false positives). Higher
curves are better, the two methods using the ideal mismatch do particularly poorly. 35

2.8 ROC curves based on fold-change where the only differences should be log FC = 1
(or -1). The ideal curve would reach 1.0 on the vertical (all true positives identified)
when at 0 on the horizontal (no false positives). Higher curves are better. . . . . . . 36

3.1 Quantile-Quantile plot motivates the quantile normalization algorithm. . . . . . . . 41

3.2 The quantile normalization adjustment in 2 dimensions. . . . . . . . . . . . . . . . 42

3.3 The quantile normalization method transforms the distribution of intensities from
one distribution to another. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 A boxplot of raw log2 PM intensities across arrays in Genelogic Spike-in dataset
shows need for normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Boxplots of expression across arrays in Genelogic Spike-in dataset when using
probe-level scaling normalization and when using probe-level quantile normalization. 50

3.6 MA-plot comparing non-differential probesets from two groups of three arrays each.
The probe-level scaling normalization centers the distribution of the M’s around 0
but does not remove the non-linear trend. Probe-level quantile and Probeset quantile
normalization gave plots that were closer to the ideal. . . . . . . . . . . . . . . . . 52

3.7 Absolute deviation of M curve from x-axis for all pairwise M vs A plots. Small
even deviations are best. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 The ρ functions for some common M-estimators. . . . . . . . . . . . . . . . . . . 65



viii

4.2 The ψ functions for some common M-estimators. . . . . . . . . . . . . . . . . . . 66

4.3 The weight functions for some common M-estimators. . . . . . . . . . . . . . . . 66

4.4 Probe response patterns for two probesets over 42 arrays. The probeset 207777 s at
was spiked-in at varying concentrations across the arrays. The probeset 207539 s at
was a randomly chosen non-differential probeset. The vertical scale differs. . . . . 68

4.5 Three Probesets determined to have probe outliers. The first has a noisy probe.
The second is a spike-in probeset, with probe 4 that does not seem to differentially
hybridize except at very high concentrations. The third is a non-differential probeset
with some probes (1,2) that seem to be cross hybridizing with a spike-in transcript. 75

4.6 A probeset with five outlier chips. The two emphasized lines are averages over the
outlier and non-outlier groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Boxplots of the IQR of FC for non-differential probesets stratified by pre-processing
method. Lower values are better. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Boxplots of the AUC up to 5% for ROC curve. There are clear differences between
background methods. After adjusting for the differences in background methods
we find differences in area for normalization and summarization methods. Higher
values are better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 R2 vs Average Expression. Compared for three background adjustments. Higher
values are better. The vertical scale changes between the three plots. . . . . . . . . 87

5.4 Probe-patterns for a non-differential and a differential probeset: without pre-processing,
after convolution background, after quantile normalization and after both. . . . . . 89

6.1 ROC curve based on all pairwise comparisons of 3 vs 3 arrays using 8 arrays from
the Affymetrix HGU95A dataset. Higher curves are better. The PLM test statistics
found the most differential genes with the fewest false positives. . . . . . . . . . . 96

6.2 Comparing the performance of each test statistic using ROC curve quantities as the
number of arrays increase. The PLM model test statistics identify more differential
genes at each level of false positives. As the number of arrays increases, the t-
statistics tend to outperform raw FC. The vertical axis changes scales between plots. 97

6.3 ROC curves for GeneLogic Tonsil and AML datasets. . . . . . . . . . . . . . . . . 99

6.4 Boxplot of residuals from model by concentration group for three spike-in probesets
and a typical non spike-in probeset for the Affymetrix HGU95A spike-in dataset. . 100

6.5 Choosing pprior based on total AUC up to 5% false positives. The scale on the
vertical axis changes between plots. . . . . . . . . . . . . . . . . . . . . . . . . . 102



ix

7.1 Three sources of mRNA were either individually hybridized to arrays (singles) or
mixed together and hybridized to a set of arrays (pools). . . . . . . . . . . . . . . . 108

7.2 Pseudo-chip images of robust linear model weights for selected chips. Darker areas
indicate areas of lower weight. Most of the arrays (not shown) are similar to 1′, 6′

and 456(3) with no or only small defects. The image plots for 7′8′9′(1) and 789(1)
have a lot of down weighting indicating the possibility of poor data. . . . . . . . . 110

7.3 Boxplots by chip of standard errors of expression values, standardized to median
1. Two pool chips 7′8′9′(1) and 789(1) stand out as having larger standard errors
relative to other chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Comparison of the variability of singles to the variability (across replicates) or the
corresponding pools. The figures are plots of the log2 of the variance ratio of singles
to pools against the average expression value. The curve is a lowess smoother fit.
Above the x-axis the variance of the pools is greater than the variance of the singles. 112

7.5 Comparing the variance of all singles to the within pool variance of the pool arrays
by looking at the log ratio of the single variance to the pool variance, a ratio above
zero indicates that the variance of the pools is less than the variance of the singles.
After removing two poor quality arrays from the analysis, we find that the variance
of the singles is higher than the variance of the pooled arrays. . . . . . . . . . . . . 113

7.6 Boxplots of relative expression values for each middle age to young comparison.
The expression values are less variable for the pool to pool comparisons than in the
corresponding comparison between singles. . . . . . . . . . . . . . . . . . . . . . 115

7.7 MA-plots: (a) using a cut-off Csingle = 1 to detect outlier probesets from one indi-
vidual array 4′ vs average across all the other middle age arrays. (b) comparing
the average across the replicates of a pool, 4′5′6′, against the averages over all the
replicates of pooled middle aged arrays. The numbers on the plot indicate the single
array where that probeset was called an “outlier”. The horizontal lines indicate the
cut-off Cpool = 2

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.8 Dendrogram for hierarchal clustering of middle-aged mice chips. The labels are for
single or pool source and date of hybridization. . . . . . . . . . . . . . . . . . . . 120

7.9 Dendrogram for hierarchal clustering of Young Aged mice chips. The labels are for
single or pool source and date of hybridization. . . . . . . . . . . . . . . . . . . . 121



x

List of Tables

2.1 Affymetrix Location Dependent Background. . . . . . . . . . . . . . . . . . . . . 22

2.2 Weighting functions for the LESN signal adjustment. . . . . . . . . . . . . . . . . 24

2.3 Slope estimates for the regression of observed expression on spike-in concentration.
A higher slope is more desirable, with a slope of 1 the ideal. Low, Middle and High
correspond to different levels of concentration. . . . . . . . . . . . . . . . . . . . 30

2.4 Slope (and R2) estimates for the regression of observed log2 fold-change on ex-
pected log2 fold-change. Higher slopes are more desirable with a slope of 1 the
ideal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Slope estimates for fold-change restricted to low fold change comparisons |log2 (FC) |≤
2. Higher slopes are better with a slope near 1 desirable. . . . . . . . . . . . . . . 33

2.6 IQR range of M for non differential probesets. Low, middle and high refer to the
the lowest third, middle third and highest third of A values. Lower values are better. 34

2.7 Summary of the comparison of background adjustment methods. The standard
curve adjustment performed well in all comparisons. . . . . . . . . . . . . . . . . 37

3.1 Quantile Normalization Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Cyclic Loess Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Contrast Normalization Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Scaling Normalization Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Non-linear Normalization Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Probeset Quantile Normalization Algorithm. . . . . . . . . . . . . . . . . . . . . . 48

3.7 IQR of fold-change estimates for non-differential probesets. Smaller IQR are more
desirable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



xi

3.8 Median absolute difference between M curve and x-axis. Smaller values are better. 54

3.9 Comparing normalization methods using slope and R2 estimates in parentheses for
observed FC against expected FC. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Average number of true positives identified when there are 0 false positives. There
are a total of 11 differential spike-in probesets. . . . . . . . . . . . . . . . . . . . . 56

3.11 Percentage of total area under ROC curve when looking for differential probesets
with absolute log2 FC less or equal to 1. Higher areas are better. . . . . . . . . . . 56

3.12 Runtimes in seconds to normalize different numbers of arrays using complete data
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 ρ , ψ and weight functions for some common M-estimators. . . . . . . . . . . . . . 64

4.2 Default tuning constants (k or c) for M-estimation ρ , ψ and weight functions. . . . 64

4.3 Slope (and R2) for spike-in probesets. The ideal would be a slope near 1 that is even
across intensities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Assessing impact of summarization on FC estimates. IQR of fold-change estimates
for non-differential probesets. Slope estimates are for the regression of observed
fold-change against expected fold-change for spike-in probesets. . . . . . . . . . . 72

4.5 Assessing impact of summarization step on detecting differential expression using
ROC curve quantities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Summary statistics on residuals of non-differential probesets from the summariza-
tion methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 A procedure for identifying outlier probes across arrays and outlier arrays across
probes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 Outlier statistics for HGU-133A dataset. . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Counts of probesets flagged varies across pre-processing methodologies. A large
number of flagged probesets implies that the multi-array linear model is not fitting
well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Effect of pre-processing on detecting differential expression as judged by AUC up to
5% using the dilution data. AUC values are averaged across all other pre-processing
methods. Ranks (in parentheses) are averages of ranks across other pre-processing
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



xii

6.1 Statistics for ROC curves for complete Affymetrix dataset. Figures are proportion
of differential probesets identified when there is 0% or 5% false positives. AUC is
area under ROC curve up to 5% false positives. Higher values are better. . . . . . . 98

6.2 Summary statistics for ROC curves based upon GeneLogic Mixture dataset. . . . . 101

7.1 Number of probesets selected when comparing expression values on one array to
average expression on all other arrays from the age group. So array 3 has 41 probe
sets where the relative expression of that probe set compared to the average expres-
sion in the 8 other middle age arrays has estimated fold change greater than 1. We
will refer to these probe sets showing differential expression on just one array as
“outliers”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Number of probesets selected when comparing average over replicates of a pool to
average of all other pools. The figures in parentheses are proportions of these probe
sets that have been ruled as an “outlier” in the single chip comparison in Table
7.1. The first two columns are the cut-offs given and assuming equal variances in
both pooled and single arrays. The second column two columns correspond to the
assumption that the mRNA averages in the pool. This assumption did not seem
justified by our data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Number of differential probesets chosen using a fixed cutoff for estimated fold
change for (a) comparisons between groups of singles and (b) pools. The figures
in parentheses are the proportions of the differential probesets that were ruled “out-
liers” on one of the single arrays in the comparison. . . . . . . . . . . . . . . . . . 119

A.1 Concentrations in pM for spike-in probesets in Affymetrix HG U95A dataset. There
were three replicates for every group except group C making a total of 59 arrays. . 124

A.2 Concentrations in pM for spike-in probesets in Affymetrix HG U133A dataset.
There were three replicates for every experimental group. . . . . . . . . . . . . . . 125

A.3 Names of probesets in each spike-in group for Affymetrix HG U133A dataset. . . 126

A.4 Concentrations for GeneLogic AML Dataset in pM for the 11 spike-in transcripts.
Each group has three replicates except group 1. . . . . . . . . . . . . . . . . . . . 126

A.5 Concentrations for GeneLogic Tonsil Dataset in pM for the 11 spike-in transcripts.
Each group has three replicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.6 GeneLogic Dilution/Mixture study. 5 arrays were used at each concentration level.
Concentrations are in µg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



xiii

Acknowledgments

First, I’d like to acknowledge Terry Speed, whom has served has the adviser for the research de-

scribed in this dissertation. He supported me through the many trials and tribulations of finishing

this degree and put up with me delaying my qualifying exam for much longer than I should have.

For this I am thankful and I look forward to possible future collaborations.

Francois Collin, an RMA collaborator, fellow student and all around nice guy. I look forward to

reading your dissertation one day soon.

Rafael Irizarry, the other main RMA collaborator, has been a pleasure to work with. Particularly,

the many discussions about software and helping to get me involved in Bioconductor.

This dissertation received a decidingly thorough proof reading from Julia Brettschneider for which

I am very grateful. I also thank Julia for using and giving feedback on much of the software imple-

menting the routines discussed in within. Also for putting up with my disparaging comments about

the quality of software support at the SCF.

I owe a debt of gratitude to Sandrine Dudoit and Jean Yee Hwa Yang for recruiting me to work on

SMA without which I may not have got involved in microarray data analysis. Thanks for giving me

a future career.

I also wish to thank Yu Chaun Tai, Karen Vranizan and Yun Zhou for all using my R packages

and other assorted software. Perhaps my propensity for rapidly answering email encouraged more

questions than I desired, but it was a pleasure answering each and every one. A thank you to Nusrat

Rabbee who proofread portions of this dissertation.

Mark Vawter, Prabhakara Choudary, Simon Evans, Jun Li, Hiroaki Tomita, Fan Meng and many oth-

ers from the Pritzker Consortium were early and heavy users of the probe-level modeling methodol-

ogy. I appreciate the feedback and many questions I received which helped the formulation of nicer

descriptions about the methodology.

I would like to thank my parents Bill and Sylvie Bolstad for supporting my education throughout

my life. As much as I tried to fight the call of the genes I ended up as a statistician. Perhaps one

day the methods within this dissertation will help identify the statistic gene. Also a big thank you

to my sister Rachel for putting up with arguments about the philosophy of science, the meaning of



xiv

life and many other completely inane topics.

Finally, I must express my most heartfelt gratitude to Judy Pang Bolstad. Without functioning as

both the primary editor and a source of emotional support this dissertation might never have been

finished. Thanks for putting up with many nights where I looked like I was glued to the computer

and seemed like I was completely ignoring you, which I wasn’t. I look forward to many years of

post-PhD joy in our life together. Words alone can not truly convey how I feel about you.



1

Chapter 1

Introduction

This chapter introduces microarrays and gene expression. Section 1.2 describes the Affymetrix

GeneChip® technology. Section 1.3 explains the topic of low-level analysis and provides an outline

of this dissertation. In Section 1.4, two diagnostic plots that are used throughout the dissertation are

described.

1.1 Introduction

Today, microarrays are becoming widely used in many areas of biomedical research. A microarray

is a device designed to simultaneously measure the expression levels of many thousands of genes in

a particular tissue or cell type. There are numerous different microarray technologies, including the

cDNA arrays developed at Stanford (DeRisi et al., 1996), (Brown and Botstein, 1999) and the high-

density oligonucleotide arrays produced by Affymetrix (Lockhart et al., 1996). This dissertation

focuses on the analysis of data from the Affymetrix technology.

The high-density oligonucleotide array system produced by Affymetrix is known as the Affymetrix

GeneChip® . In this disseration, we generally refer to GeneChips as arrays or chips. Discussions

of how high-density oligonucleotide arrays can be used to measure gene expression are provided in

Lockhart et al. (1996) and Lockhart and Winzeler (2000). Some of the earliest published studies

where gene expression was monitored using Affymetrix GeneChip® arrays are Golub et al. (1999)

and Winzeler et al. (1999).
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Microarrays can be applied to the problems of gene discovery, the diagnosis of diseases, pharma-

cogenomics and toxicogenomics among others. Gene discovery is the process of finding genes

that are differentially expressed between tissues from different conditions. When given expression

profiles for a diseased and non-diseased tissues, a new sample can be diagnosed by measuring its

expression profile and comparing it with the reference profiles. For more on diagnosis using arrays

see the review article by Simon (2003). Pharmacogenomics is the process of discovering how a

therapeutic response from a drug affects the expression profile of a patient (Regalado, 1999). More

specifically, pharmacogenomics seeks to answer such questions as: why does a drug work better in

some patients and not others? why is a drug toxic for some people? More about pharmacogenomics

and microarrays is provided in Chin and Kong (2002) and Chicurel and Dalma-Weiszhausz (2002).

Toxicogenomics is the study of how exposure to toxicants affects the genetic profiles of the exposed

tissues: see Nuwaysir et al. (1999).

1.1.1 DNA and Gene Expression

The genetic material that contains the instructions for most organisms is known as deoxyribonucleic

acid (DNA). DNA is composed of nucleotides, with each nucleotide itself consisting of three com-

ponents: a base, a sugar and a phosphate. The nucleotides are joined together in long chains. The

backbone of these chains consist of the sugar and phosphates, while individual bases hang off each

sugar. There are four different bases: adenine, cytosine, guanine and thymine. These are usually

known by the letters A, C, G, and T respectively. A DNA molecule consists of two complemen-

tary polynucleotide chains held together using hydrogen bonding. In particular, the bases A and T

bind together, as do C and G. In this manner, we say that A is the complement of T, and C is the

complement of G. The two sugar-phosphate strands form a double helix structure. DNA strands

are typically millions of nucleotides in length. Each strand has a polarity such that a 5’-hydroxyl

group begins the first nucleotide in the strand and a 3’-hydroxyl group ends the last nucleotide in

the strand. Since the two strands are complementary one will run 5’ to 3’ and the other 3’ to 5’.

RNA, ribonucleic acid, differs from DNA in several ways. Specifically, the sugar is ribose rather

than deoxyribose and the base uracil, U, takes the place of thymine. U is also complementary to

A. Unlike DNA, most RNA molecules are single-stranded and only 75-5000 nucleotides in length.

Cells contain several types of RNA: messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal

RNA (rRNA).
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A gene is a sequence of DNA that codes for a protein. The protein in turn controls a physical trait

of the cell, for example eye or hair color. A strand of DNA contains many different genes. Proteins

are sequences of twenty different types of amino acids. Each amino acid is encoded by a sequence

of three bases. These three base groups are called codons. Although there are 64 possible triplets,

there is some redundancy because several different codons code the same amino acid. There are 3

codons which do not encode to any amino acid. Instead, they serve as “stop” signals.

The process of synthesizing proteins from DNA occurs in two stages: transcription and translation.

These are processed are collectively known as the central dogma of molecular biology. The first

stage, transcription, is the transfer of information from the double-stranded DNA molecule to the

single-stranded mRNA. An enzyme called RNA polymerase moves along one strand of DNA from

the 5’ to the 3’ direction encoding the complementary sequence as an RNA strand. The strand of

DNA from which the RNA is encoded is called the antisense strand and the other strand is called

the sense strand. The mRNA is complementary to the antisense strand, and except that base T

is changed to U is otherwise identical to the sense strand. Transcription begins at regions of the

sequence known as promoter sites and ends at regions known as terminator sites.

The second stage, translation, is the process of translating the mRNA into a protein. This occurs

using tRNA and rRNA. The codon, AUG, marks the location where translation should start. The

tRNA molecules attach amino acids to the chain as an rRNA molecule moves along the mRNA. The

process continues until one of the stopping codons is reached. At this point, the protein is complete

and can serve its purpose in the cell.

More details on the biology of translation and transcription can be found in

Gonick and Wheelis (1991) and Berg et al. (2002). Collectively, this process of converting a DNA

sequence to a protein is called gene expression. For a particlar organism the DNA content of most

cells is the same. In other words, the DNA for every gene is present in all the cells of that organ-

ism. However, the amount of mRNA and the proteins to which the mRNA are translated to varies

between cells and also varies within a cell under different conditions. For example, consider two

cell types: A and B. If we suppose that in cell A, genes 1 and 2 are transcribed into mRNA and then

translated into proteins. but that in cell B, only gene 2 is transcribed into mRNA and translated into

mRNA, but at a higher rate than in cell A. Then, we would say that gene 1 is expressed in cell A,

but not in cell B and that Gene 2 was expressed at a higher rate in cell B than in cell A.

By studying which genes are expressed and which are not, in different kinds of cells or under
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different experimental or environmental conditions, we can learn about how these genes affect the

function of the cells. Traditionally, gene expression studies were done one gene at a time using

technologies such as RT-PCR and Northern blots. The more recent development of microarray

technologies allows the simultaneous measurement of the expression level of thousands of genes.

Since the focus of a gene expression study is in the function of genes, the interest should be in the

function of the proteins. However, DNA microarrays focus on measuring the level of mRNA rather

than differences in the levels of proteins. The assumption being made is that most mRNA gets

translated into a protein. Dealing with protiens is much more complex than dealing with mRNA.

There are methods for more directly monitoring protein expression, such as Western blots, 2d gels,

and protein microarrays. However, this dissertation focuses only on DNA microarrays.

1.2 Affymetrix GeneChip® Technology

This section introduces the terminology used to describe GeneChips, how they are constructed and

the workflow for generating raw data. General overviews of the technology are provided by Lipshutz

et al. (1999) and Warrington et al. (2000). More detailed information about sample preparation,

hybridization, scanning and basic analysis can be found in the Affymetrix Microarray Suite Users

Guide (Affymetrix, 2001a) and the GeneChip® Expression Analysis Technical Manual (Affymetrix,

2003).

1.2.1 Some Basic Definitions

In order to produce a GeneChip array it is imperative that the sequence of the target organism is

known. However, this does not present a particular difficulty because a number of organisms have

now been completely sequenced and others are currently being sequenced. When given a known

sequence, a number of 25-mer sequences complementary to the sequence for target genes are cho-

sen. These sequences are known as probes. Typically 11 to 20 probes interrogate a given gene.

This collection of probes is called a probeset and there are between 12,000 to 22,000 probesets on

an array. Figure 1.1 illustrates the relationship between probes and probesets. Affymetrix uses a

number of procedures to select which 25-mer sequences should be used for each gene. In particular,

potential probes are examined for specificity, potential for cross hybridization and predicted bind-
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3’5’ Reference Sequence

Probe

Probeset

Figure 1.1: Multiple probes interrogating the sequence for a particular gene make up probesets.

TGTACCTAGTACTACTGGCTAGTAAGCCGTCTATCGGTATC

CATGATGACCGAGCATTCGGCAGAT
CATGATGACCGATCATTCGGCAGAT

Reference Sequence

Perfect Match

Mismatch

Figure 1.2: Pefect Match and Mismatch Probes.

ing properties. Cross-hybridization occurs when a single stranded DNA sequence binds to a probe

sequence which is not completely complementary. To match the properties of the sample amplifica-

tion procedure, probes are 3’ biased. That means that probes are chosen closer to the 3’ end of the

sequence. However, the probes are typically spaced widely along the sequence. More details about

probe selection are described in Mei et al. (2003). Sometimes there is more than one probeset that

interrogate the same gene, but each uses a different part of the sequence.

On a GeneChip there are two types of probes. A probe that is exactly complementary to the sequence

of interest is called a Perfect Match (PM). A probe that is complementary to the sequence of interest

except at the central base, which for 25-mers is the 13th base, is known as the Mismatch (MM).

Examples of PM and MM probes are given in Figure 1.2. In theory, the MM probes can be used

to quantify and remove non-specific hybridization. A PM and its corresponding MM probe are

referred to as a probe pair.

1.2.2 Chip Manufacturing Process

Affymetrix GeneChips® are fabricated using a photolithographic procedure. By using a series of

masks, 25-mer oligonucleotide probes are synthesised onto a wafer in such a manner that a large

number of different sequences can be produced in parallel in a small number of steps

(Fodor et al., 1991), (Fodor et al., 1993), (Pease et al., 1994). Figure 1.3 shows how this proce-

dure is carried out. First, a 5 square inch quartz wafer is bathed in silane to produce a matrix of



6

O O O O O O O O O O O O O O O O OH OH

O O O O G G O O O O G G OH OH O OH G G

T T O T G G T T C T G G
G A T C C T
: : : : : :

C T A G A G

G

T

Repeat many times

Light

Light

Mask

Wafer
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Figure 1.3: The Affymetrix GeneChip® is constructed using a photolithographic process. A series
of masks are used to deprotect different locations and base by base oligonucleotides of length 25
are built in parallel.

covalently linked molecules attached to the surface. The density of these molecules determines the

packing density of the probes. Photo-sensitive capped linkers are then attached to the silane ma-

trix. A mask is then introduced with openings at predetermined locations. When UV light is shone

through the mask, the exposed linkers become deprotected and available for binding. Once the de-

sired locations are deprotected, a solution of a deoxynucleotide of the desired base (either A, T, C or

G) with a photosensitive protection group is washed over the surface. At the unprotected locations,

the nucleotide attaches to the surface or the end of the oligonucleotide. At the next stage, a different

mask is placed over the wafer and another set of locations are deprotected. A solution of a different

base is then flushed over the surface and binds at the exposed locations. The procedure is repeated

until all probe locations reach 25 nucleotides in length. At each probe location there are millions of

copies of the same oligonucleotide. It is important to note that each probe location is called a probe

cell. Because there are only 4 possible bases for each location at each iteration a maximum number

of 4N masks are needed to produce oligonucleotides of length N.
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Earlier chips had all the probes for each probeset located contiguously on the array. However, if

there are any spatial defects, this will create problems for entire probesets. Newer chips have the

probes for each probeset spread out across the array to avoid these problems. A PM and MM probe

pair are always adjacent on the array.

Once the wafer has been fully synthesized, it is deprotected and then diced into pieces, each an

individual array. A single wafer can produce from 49-400 arrays depending on the feature size and

number of probes per array. The resulting individual arrays are packaged into cartridges and are

ready for use. Current typical arrays have between 500,000 (HGU95Av2) and 1,300,000 (HGU133

plus 2.0) probe locations. The current feature sizes are 11µm for HGU133 plus 2.0 arrays, 18µm

for HGU133A arrays and 20µm for HGU95Av2 arrays.

There are currently 26 mass produced arrays or array sets commercially available from Affymetrix.

These include arrays for the organisms Humans, Mice, Rat, Arabidopsis, Drosphilla, Yeast, Ze-

brafish, Canine and E.coli among others. It is also possible to purchase custom arrays with user

desired sequences on the array.

1.2.3 Sample Preparation and Hybridization

Figure 1.4 highlights the sample preparation process for eukaroytes. The process begins with total

RNA (or poly-A mRNA) isolated from the source tissue or cell line. The total RNA is then reverse

transcribed to produce double-stranded cDNA using a series of reagents. A cleaning procedure is

then carried out on the cDNA. Next biotin labeled cRNA is produced from the cDNA. After another

cleaning procedure, the biotin labeled cRNA is fragmented. The fragments are typically 25-200

bases in length.

A number of controls are also used for Affymetrix arrays. Control Oligo B2 hybridizes to locations

on the edges and corners of the array. BioB, bioC, bioD and cre are E. coli genes that are added at

specified concentrations to check how well the hybridization, washing and staining procedures have

performed. An additional five genes from B. subtilis, dap, thr, trp, phe, lys, are also used as controls.

The fragmented biotin labeled cRNA along with the controls, are mixed to form a hybridization

cocktail. The array cartridge is then filled with the mixture and placed in a hybridization oven for

16 hours.
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Figure 1.4: Typical target sample preparation for Eukaroytic organisms.
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Figure 1.5: During the hybridization process cRNA binds to the array.
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Figure 1.6: A section of a scanned image for chip. Image quantification takes place by gridding.

Figure 1.5 shows what happens during the hybridization procedure. Utilizing the complementary

binding properties of DNA, the fragmented cRNA and controls bind to the oligonucleotides on

the array. If there is more cRNA for a particular gene in the hybridization cocktail, then after

hybridization there should be more material attached to the probes corresponding to that gene.

After hybridization, non-hybridized cRNA is removed from the cartridge and the array is placed in a

fluidics station. Then, a series of washing and staining steps are applied to the array. The fluorescent

staining agent streptavidin-phycoerythrin (SAPE) binds with the biotin labeling on the cRNA.

1.2.4 Scanning and Image Quantification

After the washing and staining process the array is removed from the fluidics station and placed in a

scanner. Laser light is shone onto the array and excites the fluorescent staining agent. At locations

where more cRNA hybridized a brighter signal should be emitted. The amount of signal emitted

is recorded as a value in 16 bits, and by examining the entire chip an image is produced. The

Affymetrix software stores this image in the DAT file.

Figure 1.6 shows a portion of an image for an array. The checker board pattern and bright spots on

the edges correspond to control oligo B2 probes. These are used to superimpose and align a grid

upon the image. Once the gridding has taken place, the border pixels are ignored and the internal

pixels of each grid square are used to compute a probe intensity. In particular, the 75th percentile of
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the intensities for these pixels gives the probe intensity for each probe cell. These probe intensity

values are written into the CEL file. All of the analyses in this dissertation begin with data read from

the CEL file.

1.2.5 Computing Expression Measures for High-density Oligonucleotide Data

The next step after reducing the image data to a CEL file is to process the data to produce expression

values. Specifically, the PM and MM probe intensities for each probeset must be combined together

to produce a summary value. Originally, this was done using the average difference (AvDiff) algo-

rithm (Affymetrix, 1999). After a slight background adjustment, the intensity values for each MM

were subtracted from the corresponding PM intensity, and for each probeset the average of these

differences was taken. AvDiff had several drawbacks, for example it was noisy for low intensities

and gave negative values. To remedy these problems Affymetrix proposed a new algorithm, now

commonly referred to as MAS 5.0 (Affymetrix, 2001a). This no longer yielded negative values and

made attempts to be more robust. However, as will be discussed in later chapters, it was still not

completely satisfactory.

Numerous alternative methods of computing expression measures have been proposed. The most

popular of these include the Model Based Expression Index (MBEI) (Li and Wong, 2001a) and the

Robust Multi-chip Average (RMA) (Irizarry et al., 2003a), (Irizarry et al., 2003b). In addition, a

framework for comparing expression measures has been given by affycomp (Cope et al., 2004). A

major portion of this dissertation focuses on methods for producing expression measures.

1.3 Dissertation Outline

Low-level analysis of high-density oligonucleotide arrays involves the manipulation and modelling

of probe intensity data. The goal of low-level analysis is to produce more biologically meaningful

expression values. Ideally, expression values should be both precise (low variance) and accurate

(low bias). A primary goal is to determine which genes are differentially expressed between treat-

ment conditions. Other topics in low-level analysis include determining whether a gene is being

expressed in a given tissue (prescence/absence) and also array quality assessment diagnostics. The

focus of this dissertation will be on computing expression values. Another motivation for low-level
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analysis is that it is possible that information becomes lost when moving from probe-level data to

expression meaures.

A low-level analysis does not typically attempt to directly answer a question of biological interest,

for example topics such as determining gene function, cell cycle studies and pathway analysis.

Instead these are usually addressed by high-level analysis. A low-level analysis of the data should

provide better expression measures which can be used in higher level analyses.

The following six chapters of this dissertation address topics in low-level analysis. The first four

chapters examine procedures for constructing gene expression measures. Chapter 2 covers the topic

of background correction which is an adjustment made on a chip by chip basis to signal inten-

sities. Chapter 3 investigates procedures for normalization, which aims to reduce variability of

non-biological origin between multiple arrays. Summarization, which is the process of combining

the multiple probe intensities for each probeset to a single gene expression value, is studied in Chap-

ter 4 and a three-stage framework for computing expression values is presented in Chapter 5. Each

of these chapters considers numerous different methods of pre-processing array data and producing

expression measures. To assess the effect that each method has on the resultant expression mea-

sures, series of spike-in datasets will be used. A spike-in dataset has RNA for particular probesets

spiked-in at known concentrations. This gives a “truth” by which each method can be judged.

Next, Chapter 6 considers methods for detecting differential expression. Specifically, methods based

on probe-level models are compared with methodologies based on gene expression measures. Since

finding differentially expressed genes is often of primary interest in a microarray experiment, it

is important to have a method which can correctly identify differential genes, without incorrectly

identifying non-differential genes.

Finally, Chapter 7 is a case study on the effect that pooling has on gene expression estimates. It

has been suggested that pooling reduces biological variability. Using 36 mice arrays, some that are

hybridized using pooled mRNA and others that are hybridized from a single source, we investigate

whether pooling is effective.
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1.4 Two Important Diagnostic Plots

1.4.1 MA plots

The MA-plot has become a widely used tool in microarray analysis. It has been applied as a part

of a number of normalization procedures. The papers by Dudoit et al. (2002), Yang et al. (2002)

and Bolstad et al. (2003) provide more details about normalization. MA-plots are typically used to

compare two color channels, two arrays or two groups of arrays. The vertical axis is the difference

between the logarithms of the signals(the log ratio) and the horizontal axis is the average of the log-

arithms of the signals. The M stands for minus and the A for add (Smyth et al., 2003). Conveniently,

MA is also mnemonic for microarray.

Some microarray researchers, such as Quackenbush (2002) and Cui et al. (2003), have referred to

these as Ratio-Intensity (RI) plots. In wider statistical and medical literature, plots of differences

against means are commonly known as Bland-Altman plots (Altman and Bland, 1983), (Bland and

Altman, 1986). The concept of testing for agreement between two samples using means and dif-

ferences traces as far back as Pitman (1939). A discussion of such plots along with the effect of

different data transformations is given in Hawkins (2002). Another similar plot is the Tukey mean-

difference plot, which plots difference versus average of the quantiles (Chambers et al., 1983).

However, this dissertation does not use quantiles and exclusively uses the term MA-plot in prefer-

ence to the alternatives.

The MA-plots in this dissertation have been constructed in the following manner: Let Xi j be intensity

i on array j. To compare the two arrays j and k, the M and A values are computed by Mi =

log2 (Xi j)− log2 (Xik) and Ai = 1
2 (log2 (Xi j)+ log2 (Xik)). Since we work with logged expression

values, these are typically just the difference and average respectively. The base 2 logarithm is used

for convenience so that a unit change in M represents 2 fold-change in expression and a unit change

in A represents a doubling of brightness. Because the probe-intensities are measured using a 16 bit

image, the maximum possible value of A is 16.

Figure 1.7 shows how two arrays can be compared. On the left, we compare the two arrays by

plotting intensities from one against the intensities on the other. The figure on the right compares

the two arrays using an MA-plot. While there is a visible difference between the two arrays from

the first plot, the non-linear trend is not apparent. Since there are more lower probe intensities than
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Figure 1.7: Comparing PM intensities from two replicate arrays By either plotting one array against
the other or by using an MA-plot.
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higher intensities, the log transformation allows us to more easily assess the behavior across all

intensities. In the first plot, there is a tendency to view the trend based upon the higher intensities

which are spread over a greater range, but it is hard to discern trends in the low intensity point cloud.

The MA-plot makes the relationship between the arrays much easier to visually assess.

In this dissertation, we use MA-plots to compare the performance of various methods of computing

expression measures. For non-differential probesets, it is ideal for the MA-plot to be tight around

M = 0 across all intensities. A lowess curve (Cleveland, 1979) fitted to an MA-plot shows whether

the M values are centered around 0 at each intensity value. The spread of the point cloud around the

lowess curve allows us to measure the variability.

1.4.2 Receiver Operating Characteristic curves

Receiver Operating Characteristic (ROC) curves were introduced in the 1950s as a tool for deciding

whether radio signals were noise or both noise and signal (Peterson et al., 1954). More recently

they have gained widespread use in medical decision-making, for more see Lusted (1971), Swets

(1988), Begg (1991) and Campbell (1994).

An ROC curve is a method by which we can assess the performance of a test. On the vertical axis

we plot the rate of true positives, i.e. correct rejection of null hypotheses when they are false. On

the horizontal axis we plot the rate of false positives, i.e. incorrectly rejecting true null hypotheses.

An ideal test would give 100% true positives without any false positives.

Figure 1.8 shows ROC curves for three tests. A desirable test identifies more true positives for any

level of false positives. Therefore, when examining ROC curves we judge the test with the highest

curve as being the best method. In Figure 1.8 both Test2 and Test3 would be judged better tests than

Test1. Sometimes the ROC curves cross, as Test2 and Test3 do in the figure. In this case, Test3 is

better until the 20% false positive rate. After this point, Test2 is better. One method of comparing

tests is to use the area under the curve (AUC). Tests with higher AUC are judged as being better.

In this dissertation, ROC curves are used to compare methods of detecting differentially expressed

genes. In situations where it is known which probesets are differential and which are not, ROC

curves are created by thresholding the test statistic at various levels and counting the number of

differential genes correctly identified (the true positives) and the number of non-differential genes
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Figure 1.8: An ROC curve comparing three tests.

incorrectly identified as being differential (the false positives). Methods which correctly select more

differential genes and fewer non-differential genes are judged to be better.



16

Chapter 2

Background Correction and Signal

Adjustment

This chapter discusses background correction methods. Section 2.1 provides a clear definition of

what constitutes a background correction/signal adjustment method. Section 2.2 describes some of

the proposed background and signal adjustment methods. Section 2.3 compares the methods and

Section 2.4 discusses the results of the comparison.

2.1 Introduction

The term background correction, also referred to as signal adjustment, describes a wide variety of

methods. More specifically, a background correction method should perform some or all of the

following:

1. Corrects for background noise and processing effects.

2. Adjusts for cross hybridization which is the binding of non-specific DNA (i.e. non-complementary

binding) to the array.

3. Adjusts expression estimates so that they fall on the proper scale, or are linearly related to

concentration.
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It is important to note that this definition is somewhat broader than is often used in the wider commu-

nity. Many times only methods dealing with the first problem have been referred to as background

correction methods.

Unlike other array systems, such as cDNA microarrays, where pixels surrounding a spot can be used

to compute the background adjustment, the probe intensities themselves must be used to determine

any adjustment for Affymetrix Genechips. This is because probe locations are very densely spaced

on the array.

2.2 Background Correction / Signal Adjustment Methods

2.2.1 RMA Convolution Model

The RMA convolution model background correction method is motivated by looking at the distri-

bution of probe intensities. Figure 2.1 shows the probe intensity distribution for a group of typical

arrays. We model the observed intensity as the sum of a signal and a background component. In

particular, our model is that we observe S = X +Y , where X is signal and Y is background. Assume

that X is distributed exp(α) and that Y is distributed N
(

µ,σ 2
)

, with X and Y independent. Further-

more, assume that Y ≥ 0 to avoid producing negative values. Thus, Y is normally distributed with

truncation at 0. This model is motivated by the observed probe densities in Figure 2.1. Under this

model the background corrected probe intensities will be given by E(X |S = s). A formula for this

quantity is derived below.

We define Φ(z) and φ(z) as the standard normal distribution function and density function respec-

tively. More specifically

Φ(z) =
∫ z

−∞

1√
2π

exp

(

−1
2

w2
)

dw

and

φ(z) =
1√
2π

exp

(

−1
2

z2
)

.

Remembering that we observe only S = X +Y , under the conditions of this model, the density of

the joint distribution of X and Y is given by

fX ,Y (x,y) = α exp(−αx)
1
σ

φ
(

y−µ
σ

)

when y > 0, x > 0
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Figure 2.1: Smoothed histograms of the probe intensities for a number of arrays from the HGU95A
spike-in dataset.
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Then, we get the joint distribution of X and S from

fX ,S (x,s) = fX ,Y (x,s− x) |J|

where J is the Jacobian of the transformation. Now, |J|= 1 and so the joint distribution of X and S

is

fX ,S (x,s) = α exp(−αx)
1
σ

φ
(

s− x−µ
σ

)

= α exp(−αx)
1
σ

φ
(

x− s+ µ
σ

)

The conditional distribution of X given S is

fX |S(x|s) =
fX ,S (x,s)

∫ s
0 fX ,S (x,s)dx

where the denominator (the marginal pdf of S) is
∫ s

0
α exp(−αx)

1
σ

φ
(

x− s+ µ
σ

)

dx

Let w = x−s+µ
σ so that σdw = dx and x = σw+s−µ . Making the substitution, the integral becomes

∫
µ
σ

−s+µ
σ

α exp(−α(σw+ s−µ))φ (w)dw

= α exp(−α(s−µ))
∫

µ
σ

−s+µ
σ

exp(−ασw)
1√
2π

exp

(

−1
2

w2
)

dw

Now, we consider the integral on the right hand side

∫
µ
σ

−s+µ
σ

1√
2π

exp(−ασw)exp(−1
2

w2)dw

=
∫

µ
σ

−s+µ
σ

1√
2π

exp

(

−1
2

(

w2 +2ασw
)

)

dw

= exp(
1
2

α2σ2)
∫

µ
σ

−s+µ
σ

1√
2π

exp

(

−1
2

(

w2 +2ασw+α2σ2)
)

dw

= exp(
1
2

α2σ2)
∫

µ
σ

−s+µ
σ

1√
2π

exp

(

−1
2

(w+σα)2
)

dw

Let z = w+σα and then the integral becomes

∫
µ
σ +ασ

−s+µ
σ +ασ

1√
2π

exp(−1
2

z2)dz = Φ
(

s−µ−ασ 2

σ

)

+Φ
(

µ +ασ 2

σ

)

−1

and the denominator is

α exp

(

1
2

α2σ2−α(s−µ)

)[

Φ
(

s−µ−ασ 2

σ

)

+Φ
(

µ +ασ 2

σ

)

−1

]
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thus,

fX |S(x|s) =
fX ,S (x,s)

∫ s
0 fX ,S (x,s)dx

=
α exp(−αx) 1

σ φ
( x−s+µ

σ
)

α exp( 1
2 α2σ2−α(s−µ))

[

Φ
(

s−µ−ασ 2

σ

)

+Φ
(

µ+ασ 2

σ

)

−1
]

=
exp
(

−αx+α(s−µ)− 1
2 α2σ2

)

1√
2πσ 2

exp
(

− 1
2σ2 (x− s+ µ)2

)

[

Φ
(

s−µ−ασ 2

σ

)

+Φ
(

µ+ασ 2

σ

)

−1
]

=

1√
2πσ 2

exp
(

− 1
2σ2

(

x2−2x(s−µ)+(s−µ)2 +2σ 2αx−2σ 2α(s−µ)+α2σ4
))

[

Φ
(

s−µ−ασ 2

σ

)

+Φ
(

µ+ασ 2

σ

)

−1
]

=

1√
2πσ 2

exp
(

− 1
2σ2

(

x2−2x(s−µ−ασ 2)+(s−µ)2−2(s−µ)σ 2α +α2σ4
))

[

Φ
(

s−µ−ασ 2

σ

)

+Φ
(

µ+ασ 2

σ

)

−1
]

=

1√
2πσ 2

exp
(

− 1
2σ2

(

x−
(

s−µ−ασ 2
))2
)

[

Φ
(

s−µ−ασ 2

σ

)

+Φ
(

µ+ασ 2

σ

)

−1
]

Let a = s−µ−σ 2α and b = σ

Therefore, the conditional distribution of x given S is

f (x|s) =
1
b φ
(

x−a
b

)

[

Φ
(

a
b

)

+Φ
(

s−a
b

)

−1
]

and so

E (x|s) =
1

Φ
(

a
b

)

+Φ
(

s−a
b

)

−1

∫ s

0

x
b

φ
(

x−a
b

)

dx

Let z = x−a
b so dz = dx

b . Thus

∫ s

0

x
b

φ
(

x−a
b

)

dx =
∫ s−a

b

−a/b
(bz+a)φ(z)dz

= a
∫ s−a

b

−a/b
φ(z)dz+b

∫ s−a
b

−a/b
zφ(z)dz

= a

[

Φ
(

s−a
b

)

+Φ
(a

b

)

−1

]

+b

[

φ
(a

b

)

−φ
(

s−a
b

)]

and so

E (X |S = s) = a+b
φ
(

a
b

)

−φ
(

s−a
b

)

Φ
(

a
b

)

+Φ
(

s−a
b

)

−1
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In most Affymetrix micorarray applications φ
(

s−a
b

)

is neglible and Φ
(

s−a
b

)

is close to one. So in

practice, it is only necessary to compute the first term in the numerator and the first term in the

denominator to make the adjustment.

It is somewhat troublesome to estimate the parameters µ , σ and α . Some approaches are either

painfully slow (the EM algorithm) or numerically unstable (Newton methods). An ad-hoc approach

is used to estimate the parameters. First, a non-parametric density estimate of the observed probe

intensities on an array is taken, the mode of which is used as the estimate of µ . Then, the variabilty

of the lower tail about µ is used for σ and an exponential is fitted to the right tail to estimate α .

In this thesis, we have elected to only adjust PM probe intensities because we focus on expression

measures which use only PM probes, but in principle we could adjust MM probe intensities using

this method, either separately or together with the PM probe intensities.

2.2.2 Methods Proposed by Affymetrix

There are two separate adjustment steps that have been proposed by Affymetrix (2002). For our

analysis, they are considered both separately and in the sequence in which they are used in the

MAS 5.0 software (Affymetrix, 2001a), which is the location specific correction followed by the

ideal mismatch adjustment. It should be noted that we created our own implementations of these

methods based upon the available documentation and there may be some slight differences from the

Affymetrix software.

Location Specific Correction

The goal of this step is to remove overall background noise. Each array is divided into a set of

regions, then a background value for that is grid estimated. Then each probe intensity is adjusted

based upon a weighted average of each of the background values. The weights are dependent on the

distance from the centroid of each of the grids. In particular, the weights are

wk (x,y) =
1

d2
k (x,y)+ smooth

where dk (x,y) is the euclidean distance from location x,y to the centroid of region k. The default

value for smooth is 100. Special care is taken to avoid negative values or other numerical problems



22

Let Px,y be the probe intensity at the location (x,y)

Divide array into K rectangular regions (default K = 16)

for k = 1 to K do

For the lowest 2% of probe intensities in grid k compute mean (call this background for region

k) bk and standard deviation (call this the noise for region k) nk.

end for

for all probes on the array do

Compute B(x,y) and N(x,y)

Px,y = max(Px,y−B(x,y) ,N f ∗N (x,y)) (default N f = 0.5)

end for
Table 2.1: Affymetrix Location Dependent Background.

for low intensity regions. Table 2.1 describes the algorithm in more detail. B(x,y) is the weighted

average of the bk at location (x,y) and N(x,y) is the weighted average of the nk at location (x,y).

Ideal Mismatch

Originally, the suggested purpose of the MM probes was that they could be used to adjust the

PM probes Affymetrix (1999) by subtracting the intensity of the MM probe from the intensity of

the corresponding PM probe. However, this becomes problematic because, in a typical array, as

many as 30% of MM probes have intensities higher than their corresponding PM probe (Naef et al.,

2001). Thus, when raw MM intensities are subtracted from the PM intensities it is possible to

compute negative expression values. Another drawback is that the negative values preclude the use

of logarithms which have proved useful in many microarray data situations.

To remedy the negative impact of using raw MM values, Affymetrix introduced the Ideal Mismatch

(IM) (Affymetrix, 2001b), which was guaranteed by design to be positive. The goal of this method

is to use MM when it is physically possible (i.e. smaller than the corresponding PM intensity) and

something smaller than the PM in other cases. First, a quantity Affymetrix refers to as the specific

background (SB) is calculated for each probeset. This is computed by taking a robust average of the

log ratios of PM to MM for each probe pair. If i is the probe and k is the probeset then for the probe



23

pair indexed by i and k the ideal mismatch IM is given by

IM(k)
i =























MM(k)
i when MM(k)

i < PM(k)
i

PM(k)
i

2SBk
when MM(k)

i ≥ PM(k)
i and SBk > τc

PM(k)
i

2τc/(1+(τc−SBk)/τs)
when MM(k)

i i j ≥ PM(k)
i and SBi ≤ τc

(2.1)

where τc and τs are tuning constants referred to as the contrast τ (default value 0.03) and the scaling

τ (default value 10) respectively. The adjusted PM intensity is given by subtracting the correspond-

ing IM.

2.2.3 Correcting Low Intensity Signals: LESN

The RMA convolution model background method applies the largest relative adjustments to the

smallest intensities and leaves the order of probe intensities invariant. Extending these principles, we

devise methods where the lowest probe intensities are given the largest relative adjustment (toward

0) and the order is preserved. We call this signal adjustment approach LESN (Low End Signal is

Noise).

Shifting

The simplest of these adjustments is to shift all intensities so that the minimum intensity on the chip

becomes some predefined value. Ideally, we would like the minimum intensity on a chip to be zero,

but since this becomes troublesome when logarithms are taken, we instead set this value to some

small but non-zero value p0.

Let pmin be the minimum probe value on the array. Then for a probe Pi the background adjusted

value P′i is given by

P′i = Pi− (pmin− p0).

Stretching

Rather than merely shifting the entire distribution of probe intensities downward, we can stretch out

the lower tail to the minimum value. By using this method, low intensity probes are adjusted more
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Name Weight Function

Uniform (shifting) 1
Linear pi−pmax

pmin−pmax

Exponential decay exp(− pi−pmin
θ )

Half Gaussian exp
(

− (pi−pmin)2

θ 2

)

None 0

Table 2.2: Weighting functions for the LESN signal adjustment.

drastically than higher intensity probes. Let w(P) be a background weighting function such that it

is decreasing, takes on values in [0,1] and has its maximum of 1 at pmin and minimum at pmax. The

background correction is given by

P′i = Pi−w(Pi)(pmin− p0).

Some example background weighting functions are shown in Table 2.2. In this dissertation, we

concentrate on the exponential decay and half gaussian weighting methods.

In Which Scale Should the LESN Correction Be Made?

To achieve more desirable effects (greater adjustment to low intensity probes), we apply the expo-

nential decay and half gaussian weighting systems on the log scale. In other words we work with

log2 probe intensities. The shifting method is carried out on original scale data.

Picking Parameters for the LESN Methods

Through experimentation, it has been found that θ = 4 is a good choice for both the exponential

decay and the half gaussian. These θ values were chosen by examining the Affymetrix HGU95A

spike-in data (Appendix A.1), but similar results have been observed with other datasets. For p0,

we arbitrarily select 0.25 or in the log2 scale −2, which is small enough to give a wide range

of expression values yet does not create numerical problems. As shown in Section 2.3, we also

examine the results of using different values of θ .
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2.2.4 Standard Curve Adjustment

As we will later see, it is typical to observe a non-linear relationship between computed expres-

sion value and concentration of mRNA when the truth is really known. This same relationship is

observed over a number of datasets. Specifically, there is a small positive slope in the lower concen-

trations, an increase in slope in the mid-range of concentrations and then a leveling off to a lower

slope at the highest concentrations where chemical saturation is likely. Such curves are indicated in

Figure 2.2 for the Affymetrix HGU95A spike-in dataset. Since this common shape is observed, it

makes sense to try to linearize it. This adjustment is illustrated in Figure 2.2. Unfortunately, there

are not “truth” (concentration) values for each probeset. We need an estimate of a parameter that

can be used as a proxy for concentration.

We use a joint model on PM and MM intensities to find such a parameter. For each probeset, the

following model is fitted:

log2

(

PM(k)
i

)

= αi + ε (k)
i

log2

(

MM(k)
i

)

= αi + γ + ε
′(k)
i

where αi is a probe effect and γ is a parameter for the difference in overall levels between the PM

and MM probes. Our estimates γ̂ relate well with concentration, as can be seen in Figure 2.3. By

estimating concentration using γ̂ , we can apply an adjustment to each probeset. Note that γ̂ could

also be used for thresholding Presence/Absence calls. Other models where a difference between the

level of PM and MM was computed could also be used for this purpose, for example, the (robust)

average of the difference between each PM and its corresponding MM (in the log-scale).

The standard curve refers to the mapping between concentration and an adjustment. In this chapter

we established the adjustment based upon known spike-in concentrations as shown in Figure 2.2.

However, in general without knowledge of truth about a number of probesets across a wide range

of known concentrations it might be difficult to establish such a curve.

2.3 Comparing Background/Signal Adjustment Methods

This section compares the different background/signal adjustment methods by assessing their im-

pacts on computed expression estimates. In particular, accurate (low bias) and precise (low variance)
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Figure 2.2: A concentration dependent pattern in expression values and a desire for linear rela-
tionship between expression value and concentration yields a concentration dependent adjustment.
On the left expression values versus concentration values for spike-in probesets from the HGU95A
dataset are plotted. A different symbol is used for each probeset. On the right is the adjustment
required to linearize the expression value concentration relationship.
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Figure 2.3: The estimates γ̂ relate very well with concentration, particularly in the low concentra-
tions. On the left the spike-in probesets are labeled by a number representing the true concentration.
Non-spikeins are represented by black points.
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expression estimates are desirable. We computed expression measures in the standard Robust Multi-

chip Average (RMA) framework for the normalization and summarization steps. In other words, we

used quantile normalization and the median polish summarization. These steps are explained in

more detail in later chapters. In each case, we background corrected with the chosen method and

then computed our expression measure in the standard way: probe-level quantile normalization,

followed by median polish summarization. Note that this means our expression values will be in

the log2 scale. In this section, we used the Affymetrix HG U95A spike-in dataset, described in

Appendix A.1, to assess and compare background methods. A spike-in dataset was useful for this

purpose because it gave us a known “truth” to measure against.

2.3.1 Comparing Computed Expression Values with Known Concentration

The first comparison was to relate computed expression values with the known spike-in concentra-

tions. In particular, plots of the observed expression, which is in the log2 scale, against the log2 of

the known spike-in concentration were considered. Basically, a desirable observation would be a

linear relationship between expression value and concentration. In addition, a slope near 1 would

be ideal.

Such plots for the two cases: no background correction and when adjusted using the standard curve

adjustment, are shown in Figure 2.4. Both plots showed a leveling off at higher intensities, most

likely due to chemical saturation on the arrays. In other words, there was no material left on the

array for additional cRNA of that particular type to bind to. The lower end showed a more linear

curve after the standard curve correction.

The concentrations were divided into three groups: low, middle and high. Low was classified as

log2 concentration less than or equal to 2, middle as between 2 and 8 and high between 8 to 10.

Slope estimates were then computed for the three groups and overall slopes for each method were

also calculated. These are shown in Table 2.3. The standard curve adjustment had reasonable slopes

in the low and middle ranges. However it had a slightly reduced slope at the high end. The LESN

corrections each had good overall slope, but this was due to overcorrecting in the mid-ranges.
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Figure 2.4: Plot of observed expression versus spike-in concentration on the log-scale, with each
spike-in probeset represented using a different symbol. The curvilinear relationship indicated by
the no background case is typical of corrections which ignore the MM information. The more linear
relationship observed in the standard curve adjustment is more typical of cases which make use of
MM information.
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Method Overall Low Middle High

No Background 0.49 0.18 0.67 0.33
Convolution 0.63 0.38 0.78 0.33
MAS 5.0 0.59 0.32 0.75 0.33
Ideal Mismatch 0.69 0.52 0.82 0.30
MAS 5.0/IdealMismatch 0.70 0.56 0.82 0.29
LESN (Shifting) 0.56 0.27 0.73 0.33
LESN (Exp 3.5) 0.88 0.42 1.15 0.43
LESN (Exp 4.0) 0.88 0.41 1.16 0.45
LESN (Exp 4.5) 0.87 0.39 1.15 0.45
LESN (Normal 3.5) 1.06 0.39 1.46 0.58
LESN (Normal 4.0) 1.01 0.35 1.39 0.62
LESN (Normal 4.5) 0.96 0.31 1.32 0.63
Standard Curve Adjustment 0.86 0.63 1.04 0.26

Table 2.3: Slope estimates for the regression of observed expression on spike-in concentration. A
higher slope is more desirable, with a slope of 1 the ideal. Low, Middle and High correspond to
different levels of concentration.

2.3.2 Comparing Computed Fold-change with Expected Fold-change

In comparative experiments, accurate estimates of fold-change are important. We averaged data

across spike-in concentration replicates, leaving us with 14 different spike-in concentration profile

groups. Next, we looked at all pairwise comparisons between each of these 14 groups, giving us 91

total pairwise comparisons for each probeset. Our aim was to compare the observed fold-change

with that given by the spike-in concentrations.

We plotted observed fold change versus expected fold change. These are shown for no background

correction and the standard curve adjustment in Figure 2.5. A 45-degree line has been added for

reference. We saw that when no background correction was applied, we were far from the line, but

adding a correction brought us much closer to a 1-1 correspondence between observed fold-change

and the truth.

Slope estimates for the regression of observed fold-change on the expected fold-change values for

each of the background methods are compared are in Table 2.4. The LESN corrections have gave

the highest slope and the standard curve also performed well. The lowest slopes were when no

background correction was applied.

Small fold-changes are often of particular interest. Restricting ourselves to log2 fold-changes in

the range (-2,2) we again examined slopes as shown in Table 2.5. A further restriction was that we
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Method Slope R2

No Background 0.48 0.96
Convolution 0.62 0.97
MAS 5.0 0.58 0.97
Ideal Mismatch 0.68 0.97
MAS 5.0/IdealMismatch 0.69 0.97
LESN (Shifting) 0.55 0.97
LESN (Exp 3.5) 0.87 0.96
LESN (Exp 4.0) 0.86 0.96
LESN (Exp 4.5) 0.86 0.96
LESN (Normal 3.5) 1.04 0.95
LESN (Normal 4.0) 0.99 0.95
LESN (Normal 4.5) 0.94 0.95
Standard Curve Adjustment 0.85 0.96

Table 2.4: Slope (and R2) estimates for the regression of observed log2 fold-change on expected
log2 fold-change. Higher slopes are more desirable with a slope of 1 the ideal.

looked only at low fold-change where the concentration was also low. In this case, a concentration

of 4 pM (picomoles) or less was considered to be low and concentrations of 8 pM or above high.

Slope estimates for these comparisons are also in this table.

2.3.3 Composite MA-plots

An MA-plot is a useful tool for comparing expression values in two groups. Let Ei j be the log2

expression value for probeset i on array j. Then, we define Mi jk = Ei j−Eik and Ai jk = 1
2(Ei j +Eik).

In this analysis, we averaged across spike-in concentration replicates before computing M and A

values. We referred to these plots as composite MA-plots because M and A values from all 91

different pairwise comparisons were placed onto the same set of axes. For these MA-plots, we

annotated the spike-in comparisons with the appropriate log2 fold-change.

Figure 2.6 shows composite MA-plots for the cases of no background, convolution, MAS5/Ideal

Mismatch and the Standard Curve adjustment. It was desirable for the non-differential probesets

to be centered around 0 with low even variability. The MAS5/Ideal Mismatch correction was

extremely noisy at the low end while the other three methods compared in these plots were less

noisy. The no background and convolution MA-plots showed that the fold-change estimates for the

spike-ins were quite attenuated for these methods. The MAS5/Ideal mismatch and Standard Curve

Adjustment more accurately estimated the true fold changes.



33

Method Overall Low Conc. High Conc.

No Background 0.42 0.21 0.50
Convolution 0.56 0.44 0.54
MAS 5.0 0.52 0.37 0.53
Ideal Mismatch 0.63 0.63 0.52
MAS 5.0/IdealMismatch 0.63 0.65 0.52
LESN (Shifting) 0.49 0.32 0.52
LESN (Exp 3.5) 0.76 0.50 0.77
LESN (Exp 4.0) 0.75 0.48 0.78
LESN (Exp 4.5) 0.75 0.46 0.79
LESN (Normal 3.5) 0.88 0.44 1.02
LESN (Normal 4.0) 0.85 0.40 1.02
LESN (Normal 4.5) 0.80 0.36 0.99
Standard Curve Adjustment 0.75 0.72 0.61

Table 2.5: Slope estimates for fold-change restricted to low fold change comparisons |log2 (FC) |≤
2. Higher slopes are better with a slope near 1 desirable.

Figure 2.6: Composite MA-plots for: no background, convolution, MAS5/Ideal Mismatch and the
Standard Curve Adjustment. Low variability of the non-differential probesets is desirable. Addi-
tionally we want the estimated fold-changes to accurately reflect the truth. The spike-in probesets
are labeled by concentration. The non-differential probesets are plotted as points.
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Method Overall Low Middle High

No Background 0.05 0.04 0.05 0.06
Convolution 0.12 0.13 0.13 0.11
MAS 5.0 0.11 0.14 0.11 0.09
Ideal Mismatch 0.30 0.33 0.48 0.20
MAS 5.0/IdealMismatch 0.41 0.86 0.56 0.20
LESN (Shifting) 0.09 0.11 0.09 0.08
LESN (Exp 3.5) 0.12 0.12 0.12 0.13
LESN (Exp 4.0) 0.12 0.11 0.12 0.13
LESN (Exp 4.5) 0.11 0.11 0.11 0.12
LESN (Normal 3.5) 0.08 0.06 0.08 0.11
LESN (Normal 4.0) 0.07 0.06 0.07 0.10
LESN (Normal 4.5) 0.07 0.06 0.07 0.09
Standard Curve Adjustment 0.21 0.20 0.21 0.21

Table 2.6: IQR range of M for non differential probesets. Low, middle and high refer to the the
lowest third, middle third and highest third of A values. Lower values are better.

We examined the variability of the non-differential probesets in Table 2.6. Lower IQR values were

better. We saw that the corrections making use of the ideal mismatch were particularly noisy in the

low and middle ranges. Applying no background correction led to the least variability. Interestingly,

the LESN corrections were slightly more variable in the higher range than in the lower and mid-

ranges (although still well below the variability of the Ideal Mismatch corrections). The IQR was

fairly stable across concentrations for the Standard Curve Adjustment, however it was among the

more variable methods.

2.3.4 Detecting Differential Expression: ROC Curves

When analyzing high density oligonucleotide array data, it is important to identify genes that are

differential without incorrectly picking non-differential genes. Ideally, it is desirable to have many

true positives (call a truly differential probeset as changed) and few false positives (calling a non

differential probeset as changed). Observed fold-change was used for choosing differential genes.

The probesets with the most extreme fold-changes were selected as the differential probesets, and

ROC curves (see Section 1.4.2) were used to compare the sensitivity and specificity of each of the

different methods.

Figure 2.7 shows the ROC curves for each of the methods. The ideal curve would go to 1 on the

y axis immediately (i.e., at x = 0). The two methods utlizing the ideal mismatch performed poorly

since the respective curves were well below the other curves.



35

0.00 0.02 0.04 0.06 0.08 0.10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

ROC curve based on fold−change

False Positives

T
ru

e 
P

os
iti

ve
s

No background
RMA
MAS 5
Ideal Mismatch
Mas5/Ideal Mismatch
LESN shifting
LESN exp3.5
LESN exp4.0
LESN exp4.5
LESN norm3.5
LESN norm 4.0
LESN norm4.5
Standard Curve Adjustment

Figure 2.7: ROC curves based on fold-change. The ideal curve would reach 1.0 on the vertical (all
true positives identified) when at 0 on the horizontal (no false positives). Higher curves are better,
the two methods using the ideal mismatch do particularly poorly.
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Figure 2.8: ROC curves based on fold-change where the only differences should be log FC = 1 (or
-1). The ideal curve would reach 1.0 on the vertical (all true positives identified) when at 0 on the
horizontal (no false positives). Higher curves are better.

Since low fold-change differential expression is often of particular interest, and usually much harder

to detect than larger fold-change expression differences, we further restricted ourselves to log2 fold-

changes equal to 1 (these are the smallest fold-changes in this dataset). An ROC curve for such

fold-changes is shown in Figure 2.8. Compared to their respective curves for all FC, and the other

methods in this comparison, the two methods using the ideal mismatch were extremely poor. The

curves for the other methods were lower than the respective curves in Figure 2.7, but still each

detected over 75% of the true positives (when we allowed 0.05% false positives).
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Method Linear Accurate FC Detect DE
Overall Low Overall Low

No Background No No No Yes Yes
Convolution No No No Yes Yes
MAS 5.0 No No No Yes Yes
Ideal Mismatch Yes Yes Yes No No
MAS 5.0/IdealMismatch Yes Yes Yes No No
LESN (Shifting) No No No Yes Yes
LESN (Exp 3.5) No Yes No Yes Yes
LESN (Exp 4.0) No Yes No Yes Yes
LESN (Exp 4.5) No Yes No Yes Yes
LESN (Normal 3.5) No Yes No Yes Yes
LESN (Normal 4.0) No Yes No Yes Yes
LESN (Normal 4.5) No Yes No Yes Yes
Standard Curve Adjustment Yes Yes Yes Yes Yes

Table 2.7: Summary of the comparison of background adjustment methods. The standard curve
adjustment performed well in all comparisons.

2.4 Discussion

In this chapter, we compared 13 different background adjustment methods which, when combined

with quantile normalization and the median polish summarization, produced expression measures.

Using the spike-in concentrations for this dataset, we were able to compare these expression mea-

sures and make judgements on the effect of each of the different background methods.

Our comparisons were either assessments of accuracy (bias), of precision (variance) or power to

detect differentially expressed probesets. In particular, the comparisons showed how well the com-

puted expression measures reflect the “truth,” as well as how well they let us detect differential

expression. We were also interested in how well our methods did in detecting differential expres-

sion and estimating fold-change with low intensity genes. A linear relationship between spike-in

concentration and expression value was also desirable.

Table 2.7 summarizes the results of the comparisons carried out in this chapter. The methods com-

pared can be grouped into four main categories. First, there were methods that did well in detecting

differential genes, but performed poorly at estimating fold change, such as the Convolution method.

The second set of methods performed well at estimating fold-change and had a linear relationship

between concentration. However, they did poorly in regard to detecting truly differential genes. The

Ideal Mismatch fell in this category. Most of the LESN corrections fell into the third group, which

consisted of methods which did well at detecting differential expression as well as at accurately
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estimating fold-change for higher fold-changes. However, these did more poorly at estimating fold

change for lower intensity genes because the relationship between concentration and expression was

not linear. Finally, the Standard Curve Adjustment fell into its own category, having performed well

when judged under all the criteria.

There still remains one drawback with the Standard Curve Adjustment method which is that it

appears to be difficult to generalize. In particular, establishing an adjustment curve is difficult

without known spike-in concentrations. One possible solution is to produce tissue and array type

specific standard curve and normalization vectors. This issue will not be explored further in this

thesis and will remain an area for future study.

Another recently proposed background correction method, GCRMA (Wu et al., 2003), has been

observed to have all the desirable properties explored in this chapter. This method is based upon

sequence information, such as GC content, for each probe and stochastic models for binding affini-

ties (Wu and Irizarry, 2004). While not considered in the comparisons in this chapter, or further

in this dissertation, the GCRMA method shows great promise as a future method of background

adjustment.
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Chapter 3

Normalization

This chapter considers the important topic of normalization for single channel microarrays. Section

3.1 explains what normalization is and why it is used, Section 3.2 discusses the various algorithms

that have been devised for normalization and Section 3.3 describes how normalization algorithms

may be applied to high-density oligonucleotide data. In Section 3.4, the proposed normalization

methods are compared, and in Section 3.5 the results of these comparisons are discussed.

3.1 Introduction

Normalization is the process of removing unwanted non-biological variation that might exist be-

tween chips in a microarray experiment. It has long been recognized that variability can exist

between arrays, some of biological interest and other of non-biological interest. These two types of

variation are classified as either interesting or obscuring by Hartemink et al. (2001). It is this ob-

scuring variation that we seek to remove when normalizing arrays. Sources of obscuring variation

can include scanner setting differences, the quantities of mRNA hybridized as well as many other

factors. Hartemink et al. (2001) discusses these possible sources in more detail.

Numerous papers proposing normalization methods have recently been published. Comparisons of

normalization methods for high-density oligonucleotide arrays are considered in both Bolstad et al.

(2003) and Schadt et al. (2001). A technical report by Ballman et al. (2003) compares quantile

and cyclic loess with an adaptation of the loess method called fastlo on the basis of probe-level
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variability.

Probe-level normalization for high-density oligonucleotide arrays has been investigated in Bolstad

et al. (2003), which compares the bias and variability of expression measures computed using dif-

ferent normalization methods. This paper defines two classes of normalization methods: complete

data methods and baseline methods. Complete data methods use information from across all arrays

to produce the normalization. The baseline methods select one array to represent the typical array,

and then all of the other arrays are normalized to that array. It has been discovered that complete

data methods are preferable to methods choosing a baseline array.

An important consideration when applying a normalization method to data from a typical compara-

tive microarray experiment, is how many genes are expected to change between conditions and how

these changes will occur. Two important assumptions were suggested by Zien et al. (2001). Specif-

ically most normalization methods require that either the number of genes changing in expression

between conditions be small or that an equivalent number of genes increase and decrease in expres-

sion. When neither of these are true then normalization should be applied only on arrays within

each treatment condition group. However, in many cases, experiments are not properly randomized

and there is confounding of conditions with sources of non-biological variation. For this reason, all

of the arrays in a particular experiment are typically normalized together as a single group.

In this chapter, a further study of complete and baseline methods, focusing on the bias and variance

of fold-change estimates will be conducted. To separate the potential confounding effect of nor-

malization and background methods, the normalization methods are used without background or

signal adjustment. In addition, a baseline method can also be made into a complete data method by

creating a composite pseudo array and then normalizing to that chip. These extensions are referred

to as composite methods.
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Figure 3.1: Quantile-Quantile plot motivates the quantile normalization algorithm.

3.2 Normalization methods

3.2.1 Complete Data Methods

Quantile Normalization

The goal of quantile normalization, as discussed in Bolstad et al. (2003), is to give the same empir-

ical distribution of intensities to each array. A quantile-quantile plot will have a straight diagonal

line, with slope 1 and intercept 0, if two data vectors have the same distribution, as illustrated in

Figure 3.1. Thus, if the quantiles of two data vectors are plotted against each other and each of these

points are then projected onto the 45-degree diagonal line, we have a transformation that gives the

same distribution to both data vectors. This transformation is shown in Figure 3.2.

In n dimensions, a quantile-quantile plot where all data vectors have the same distribution would

have the points lying on the line inscribed by the vector
(

1√
n , . . . , 1√

n

)

. This extenstion to n dimen-

sions motivates the quantile normalization algorithm described in Table 3.1.
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Figure 3.2: The quantile normalization adjustment in 2 dimensions.

1: Given n arrays of length p, form X of dimension p×n where each array is a column.

2: Sort each column of X to give Xsort.

3: Take the means across rows of Xsort and assign this mean to each element in the row to get

quantile equalized X ′sort.

4: Get Xnormalized by rearranging each column of X ′sort to have the same ordering as original X .

Table 3.1: Quantile Normalization Algorithm.



43

Figure 3.3: The quantile normalization method transforms the distribution of intensities from one
distribution to another.

The quantile normalization method is a specific case of the transformation x′i = F−1 (G(xi)), where

we estimate G by the empirical distribution of each array and F using the empirical distribution of

the averaged sample quantiles. This transformation is illustrated in Figure 3.3. Extensions of the

method could be implemented where F−1 and G are more smoothly estimated. However, we find

the current method to perform satisfactorily in practice.

Traditionally, the mean has been used at step 3 in the algorithm described in Table 3.1, but this step

could be modified to a more general procedure:

3: Apply function fn to each row of Xsort, where fn is a function of n data items, and assign this

value to each element in the row to get X ′sort.

Some possible options for fn are the mean, median, geometric average or an order statistic.
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The quantile normalization method discussed here is not unique. There have been other proposed

normalizations based upon quantiles, including Workman et al. (2002), where splines are fit to

subsets of quantiles to estimate the normalizing relation. Another non-parametric method of giving

each array the same distribution is discussed in Sidorov et al. (2002). There is also a quantile

normalization method discussed in Amaratunga and Cabrera (2001).

Cyclic Loess

The cyclic loess method is a generalization of the global loess method, which is described in Yang

et al. (2002), where cy5 and cy3 channel intensities are normalized on cDNA microarrays by using

MA plots. When dealing with single channel array data, it is pairs of arrays that are normalized

to each other. The cyclic loess method normalizes intensities for a set of arrays by working in a

pairwise manner. With only two arrays, the algorithm is identical to that in Yang et al. (2002). With

more than two arrays, only part of the adjustment is made. In this case, the procedure cycles through

all pairwise combinations of arrays, repeating the entire process until convergence. One drawback

is that this procedure requires O
(

n2
)

loess normalizations. Usually only one or two complete cycles

through the data are required. The cyclic loess algorithm is outlined in Table 3.2. The indicies i

and j in this algorithm index the arrays while the index k is used to represent probe or probesets.

Convergence is measured by how much additional adjustment has occurred on that iteration through

the dataset. To improve the runtime of the algorithm a typical implementation will use a subset of

the data to fit the loess normalization curves.

Contrast

This method is described in Astrand (2003) and is also presented in Bolstad et al. (2003). Basically,

it is another generalization of the methods described in Yang et al. (2002). In brief, the data is trans-

formed to a set of contrasts, a non-linear normalization is performed and a reverse transformation

occurs. The algorithm is shown in Table 3.3 and more complete implementation details are provided

in Astrand (2003). It requires only O(n) loess normalizations which is considerably fewer than with

the cyclic loess method. As with the cyclic loess method, a subset of the data is used to fit the loess

curves to considerably speed up the runtimes. One way that the subset may be chosen is to use a

rank invariant set of probes, see Schadt et al. (2001) for a method to select such a set.
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Let X be a p×n matrix with columns representing arrays and rows probes or probesets.

log transform the data X ← log2 X

repeat

for i = 1 to n−1 do

for j = i+1 to n do

for k = 1 to p do

Compute Mk = xki− xk j and Ak = 1
2

(

xki + xk j
)

end for

fit a loess curve for M on A. Call this f̂ .

for k = 1 to p do

M̂k = f̂ (AK)

set ak = Mk−M̂k
n

xki = xki +ak and xk j = xki−ak

end for

end for

end for

until convergence or reached maximum number of iterations

Take the anti-log X = 2X

Table 3.2: Cyclic Loess Algorithm.

3.2.2 Baseline Methods

Scaling/Linear Method

In this method, which was proposed by Affymetrix and used both in versions 4.0 and 5.0 of their

software (Affymetrix, 1999), (Affymetrix, 2001a), a baseline array is chosen and all the other arrays

are scaled to have the same mean intensity as this array. This is equivalent to selecting a baseline

array and then fitting a linear regression without intercept term between each array and the chosen

array. Then, the fitted regression line is used as the normalizing relation. This method is outlined

in Table 3.4. One proposed modification, is to remove the highest and lowest intensities when

computing the mean, that is we use a trimmed mean. Affymetrix removes the highest and lowest

2% of the data. Affymetrix has proposed using scaling normalization after the computation of

expression values, but in this thesis we also use it at the probe-level.
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log transform the data X = logX .

Z = log(X)M′ where M is an orthonormal matrix.

for i = 2 to n do

fit a loess curve of the ith column of Z on the 1st column of Z. Call this curve ŷi−1.

end for

Define a mapping [x, ŷ1, . . . , ŷn−1] 7→ [x,0, . . . ,0].

Normalization is given by exp([x, ŷ1, . . . , ŷn−1]M) 7→ exp([x,0, . . . ,0]M).

Table 3.3: Contrast Normalization Algorithm.

Pick a column of X to serve as baseline array, say column j.

Compute (trimmed) mean of column j. Call this X̃ j.

for i = 1 to n, i 6= j do

Compute (trimmed) mean of column i. Call this X̃i.

Compute βi =
X̃ j

X̃i
.

Multiply elements of column i by βi.

end for
Table 3.4: Scaling Normalization Algorithm.

Non-linear Method

Rather than using a linear normalizing relation, as in the scaling method, a non-linear relationship

between each array and the baseline array can be used. Such methods have been proposed by Schadt

et al. (2001) and are currently used in the dChip software (Li and Wong, 2001a). An outline of the

procedure is given in Table 3.5.

Pick a column of X to serve as baseline array, say column j.

for i = 1 to n, i 6= j do

Fit a smooth non-linear relationship mapping column i to the baseline j. Call this f̂i

Normalized values for column j are given by f̂i (X j)

end for
Table 3.5: Non-linear Normalization Algorithm.

Numerous non-linear relationships have been used for this normalization method including cross-

validated splines (Schadt et al., 2001), running median lines (Li and Wong, 2001b) and loess

smoothers (Bolstad et al., 2003).
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There are several ways in which the baseline array can be selected, or created. In this dissertation we

have considered four different methods. The first method is to select the array with the median total

intensity as the baseline. Similarly, a second method is to select the array with the median median

intensity as the baseline array. With both of these options it is still possible that a troublesome array

will be chosen as the baseline array. Instead a baseline array can be constucted using all the data,

this is explained in the following subsection.

3.2.3 Composite Methods

A baseline method can be transformed into a complete data method by creating a composite array

based upon data from all arrays. This is called a composite method. One method for constructing

a composite chip is to take probe-wise means or medians. The composite chip is then used as the

baseline array and the selected baseline method is used in the normal fashion. Because many prob-

lems arise when a single chip is chosen as a baseline, the composite approach should be preferred if

a baseline method is used. Both the probe-wise mean and median chips have been used as baselines

for the non-linear method in this chapter.

3.3 Probe-level, Probeset-level and Expression-level Normalization

There are three levels at which normalization can occur: probe-level, probeset-level and after com-

puting expression. The topic of probe-level normalization is considered extensively in Bolstad et al.

(2003). At this level, it is raw probe intensites, possibly after a background correction, that are

normalized.

Probeset-level normalization occurs when all the probes in a probeset are normalized together as

a group. For instance, we could compute the mean (or median) value of a probeset, normalize

these summaries and then adjust individual probes based on the adjustment to the summary. In this

dissertation, we focus only on adapting the quantile normalization method to operate in this manner.

This adapted algorithm is described in Section 3.3.1.

Normalization can also take place after expression values have been computed. This is how the

scaling normalization is carried out by Affymetrix (2001a). In our analysis, we carry out expression



48

Given n arrays of length p, form Xall of dimension p×n where each array is a column and each

row corresponds to a row.

Let J = 1, . . . ,NA index the arrays

Let n = 1, . . . ,NP index the number of probesets

Let i = 1, . . . , In index the probes in probeset n.

Let rn be a vector containing the indicies of the rows of Xall for probeset n.

Set Xall← log2 Xall

for n = 1 to NP do

Choose the rows of Xall indexed by rn to form an In by NA matrix. Call this Xn

To each column of Xn apply a summarization function fs yielding a summary vector Sn of

length NA

Subtract Sn from each row of Xn

Set the nth row of Xreduced as Sn.

end for

Quantile Normalize Xreduced using the algorithm in Table 3.1

for n = 1 to Np do

To all rows of Xn add nth row of Xreduced

Copy the rows of Xn into Xall using the indicies in rn.

end for

Set Xall← 2Xall

Table 3.6: Probeset Quantile Normalization Algorithm.

level normalization using one of the standard methods after computing the expression measures for

each array without probe or probeset-level normalization.

3.3.1 Probeset-level Quantile Normalization

The goal of a probeset normalization method is to preserve any parallelism in probe pattern across

arrays. In particular, we normalize so that each probe in the probeset is adjusted in a similar manner.

The Probeset Quantile Normalization algorithm is outlined in Table 3.6. For this analysis, we use

either the mean or the median as our summary function fs. In addition, we quantile normalize

Xreduced on either the log scale or natural scale.
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3.4 Comparing Normalization Methods

In order to compare normalization methods we used the GeneLogic AML spike-in dataset described

in Appendix A.3 . A boxplot of the raw PM probe-intensities, by array, for this dataset is shown

in Figure 3.4. Common background RNA was used on all the arrays and so we wanted the ar-

rays to give us similar expression values. The clear differences in expression values between arrays

shown in this plot indicated that normalization was required for this dataset. We assessed the perfor-

mance of the different normalization methods by comparing computed expression measures. In this

chapter, the expression measures were computed using the median polish summarization after nor-

malization. Because of possible confounding between the different background methods and each

normalization, no background adjustment was used. In the case of expression-level normalization,

the summarization took place on unnormalized data. Chapter 5 examines the interaction between

background adjustment and normalization methods.

Figure 3.4: A boxplot of raw log2 PM intensities across arrays in Genelogic Spike-in dataset shows
need for normalization.
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Figure 3.5: Boxplots of expression across arrays in Genelogic Spike-in dataset when using probe-
level scaling normalization and when using probe-level quantile normalization.
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Method Probe level Expression Level

None 0.315
Quantile 0.097 0.106
Quantile (median) 0.096
Quantile (log2) 0.097 0.105
Quantile (log2, median) 0.096
Quantile (probeset) 0.160
Quantile (probeset, median) 0.108
Quantile (probeset, log2) 0.106
Quantile (probeset, log2, median) 0.107
Cyclic Loess 0.086 0.096
Contrast 0.101 0.105
Scaling 0.258 0.191
Nonlinear (median total) 0.104 0.114
Nonlinear (median median) 0.104 0.114
Nonlinear (pseduo-mean) 0.010 0.108
Nonlinear (pseudo-median) 0.098 0.103

Table 3.7: IQR of fold-change estimates for non-differential probesets. Smaller IQR are more
desirable.

Figure 3.5 shows expression values by array after normalization. We saw more similarity across

arrays than in Figure 3.4, but it was clear that the scaling normalization was insufficient. The distri-

bution of expression values was much closer to identical when the quantile normalization algorithm

was used. Similar boxplots for the other non-linear normalization methods showed much more

striking resemblence between arrays than the scaling method did.

3.4.1 Assessing Variance and Bias of Non-diffential Probesets

In the GeneLogic AML dataset, there were 66 possible pairwise comparisons that could have been

made between different spike-in concentration groups. For each of these pairwise comparisons, we

computed fold-change estimates by taking the average of the expression measures over the replicate

arrays in the two concentration groups. The difference between the two averages gave the log2 fold-

change. Table 3.7 shows the IQR of the fold-change estimates for non-spikein probesets across all

possible comparisons. The non-spikein probesets were expected to be non-differential. Since lower

variability was better, we looked for methods with lower IQR.

In general, all of the normalization methods reduced the variability when compared to unnormal-

ized data. The Cyclic Loess method provided the least variable non-differential probesets, and

the various probe-level Quantile methods also performed well. The scaling normalization reduced
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Figure 3.6: MA-plot comparing non-differential probesets from two groups of three arrays each.
The probe-level scaling normalization centers the distribution of the M’s around 0 but does not
remove the non-linear trend. Probe-level quantile and Probeset quantile normalization gave plots
that were closer to the ideal.

this variability only marginally. Another interesting observation was that variability among these

fold-change estimates was lower for the probe-level normalization than that for the corresponding

normalization carried out at the expression-level (except in the case of the scaling normalization).

This difference suggested that probe-level normalization should be favored for reducing variability

over an expression-level normalization.

An ideal MA-plot comparing two groups of arrays on non-differential probesets would be centered

around M = 0 and the point cloud would be evenly distributed about M = 0 across the range of

intensities. MA-plots for four methods are shown in Figure 3.6. This provided a good illustration

of one of the drawbacks of the scaling normalization. Since scaling does not remove non-linear

differences between arrays the lowess curve observed for the unnormalized data is just translated
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Figure 3.7: Absolute deviation of M curve from x-axis for all pairwise M vs A plots. Small even
deviations are best.

to be centered around M = 0. The MA-plots for the probe-level Quantile and probeset Quantile

normalizations were closer to the ideal for such plots.

The location of the lowess curve in the MA-plot provided a method of judging how biased or oth-

erwise each of the methods were. Specifically, we looked at the absolute deviation of the lowess

curve from the M = 0 axis. Figure 3.7 shows the average absolute deviation of the lowess curve for

all pairwise MA-plots against average A. We saw that scaling did poorly, particularly in the lower

intensity range where the deviations were even larger than for unnormalized data. Since there were

fewer high intensity points, the lowess curves at the higher intensities were more variable and this

accounted for the increasing trend we saw for all of the methods.

Table 3.8 gives the median absolute difference of the lowess curve to M = 0 for all of the methods.

In this table, the expression-level normalizations had smaller values and thus, had lowess curves

that were tighter around M = 0, as compared to the corresponding probe-level normalization. As

shown in Figure 3.7 the scaling normalization performed poorly.
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Method Probe level Expression Level

None 0.328
Quantile 0.035 0.009
Quantile (median) 0.036
Quantile (log2) 0.035 0.009
Quantile (log2, median) 0.036
Quantile (probeset) 0.035
Quantile (probeset, median) 0.026
Quantile (probeset, log2) 0.017
Quantile (probeset, log2, median) 0.025
Cyclic Loess 0.044 0.017
Contrast 0.066 0.007
Scaling 0.121 0.169
Nonlinear (median total) 0.036 0.010
Nonlinear (median median) 0.036 0.010
Nonlinear (pseduo-mean) 0.034 0.008
Nonlinear (pseudo-median) 0.035 0.010

Table 3.8: Median absolute difference between M curve and x-axis. Smaller values are better.

3.4.2 Assessing Bias and Variability of Differential Probesets

In the GeneLogic AML dataset, there were 11 probesets that had been spiked-in at various pre-

selected concentrations. We used these known concentrations, as a “truth,” to assess the effect that

each of the normalization methods had on estimates of fold-change.

After averaging across spike-in replicates, fold-change estimates were computed for all pairwise

comparisons. Table 3.9 contains slope and R2 estimates for the regression of observed fold-change

against expected fold-change. In general, higher R2 values are better as are higher slopes. All the

normalization methods improved the R2 over unnormalized expression values. The slopes reflected

how the normalization affects the raw probe intensities. A greater range of expression values on

an array resulted in a higher slope, which was the case with the non-linear method. The baseline

array chosen for the non-linear method, using the both median total and median median intensity,

had a larger spread of intensities than most arrays and thus it had higher slopes. The non-linear

method applied using the pseudo-mean and pseudo-median baselines behaved similarly to the other

normalization methods. There was no reason to believe that there should have been any bias in

unnormalized data, thus we also compared each slope to the slope for unnormalized data. The slope

for non-linear method was the furthest from the unnormalized data, while the Quantile method was

the closest. One interesting observation is that all of the methods seemed to have lower slopes than

the unnormalized case, indicating a slight attentuation of the FC estimates. From this analysis, it
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Method Probe level Expression Level

None 0.591 (0.863)
Quantile 0.588 (0.876) 0.586 (0.877)
Quantile (median) 0.579 (0.877)
Quantile (log2) 0.580 (0.876) 0.578 (0.877)
Quantile (log2, median) 0.579 (0.877)
Quantile (probeset) 0.585 (0.874)
Quantile (probeset, median) 0.588 (0.876)
Quantile (probeset, log2) 0.579 (0.877)
Quantile (probeset, log2, median) 0.578 (0.877)
Cyclic Loess 0.580 (0.872) 0.580 (0.873)
Contrast 0.582 (0.880) 0.579 (0.877)
Scaling 0.585 (0.875) 0.586 (0.880)
Nonlinear (median total) 0.617 (0.877) 0.616 (0.877)
Nonlinear (median median) 0.619 (0.877) 0.616 (0.877)
Nonlinear (pseduo-mean) 0.583 (0.876) 0.586 (0.877)
Nonlinear (pseudo-median) 0.579 (0.877) 0.577 (0.877)

Table 3.9: Comparing normalization methods using slope and R2 estimates in parentheses for ob-
served FC against expected FC.

was not clear that the quantile method or any of the other complete data methods had adverse effects

on the bias of the observed fold-change estimates. In other words, there was not sufficent evidence

to conclude that normalization was greatly decreasing or increasing the FC estimates.

3.4.3 Impact of Normalization on the Ability to Detect Differential Expression

By threshholding on observed fold-change, it is possible to declare a probeset as differential or not.

For each of the possible comparisons, we counted how many differential probesets were identified

before we found the first non-differential probeset. Over all 66 pairwise comparisons the aver-

age number of true differential probesets detected is shown in Table 3.10 for each of the possible

methods. By normalizing, we were able to increase the number of truly differential probesets de-

tected before reaching the first non-differential probeset. Expression-level normalization resulted in

a slightly lower number of truly differential probesets being detected compared to the corresponding

probe-level normalization. Apart from scaling, the normalization methods were fairly comparable.

It is important that we are also able to accurately detect low fold-change genes. We restricted our-

selves to look only at those spike-ins which had absolute log2 fold-changes less than or equal to 1 (an

expression difference of two-fold or less). The metric used to compare methods was the total area

under the ROC curve. The areas that were observed are displayed in Table 3.11. The conclusions
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Method Probe level Expression Level

None 7.74
Quantile 8.30 8.26
Quantile (median) 8.27
Quantile (log2) 8.29 8.24
Quantile (log2, median) 8.27
Quantile (probeset) 7.96
Quantile (probeset, median) 8.11
Quantile (probeset, log2) 8.27
Quantile (probeset, log2, median) 8.15
Cyclic Loess 8.39 8.36
Contrast 8.31 8.30
Scaling 7.82 8.04
Nonlinear (median total) 8.27 8.21
Nonlinear (median median) 8.27 8.21
Nonlinear (pseduo-mean) 8.27 8.26
Nonlinear (pseudo-median) 8.33 8.33

Table 3.10: Average number of true positives identified when there are 0 false positives. There are
a total of 11 differential spike-in probesets.

Method Probe level Expression Level

None 77.0
Quantile 93.2 92.6
Quantile (median) 92.8
Quantile (log2) 93.3 92.2
Quantile (log2, median) 92.8
Quantile (probeset) 88.7
Quantile (probeset, median) 92.0
Quantile (probeset, log2) 93.0
Quantile (probeset, log2, median) 92.1
Cyclic Loess 93.0 91.8
Contrast 92.4 92.3
Scaling 83.0 86.3
Nonlinear (median total) 93.6 91.9
Nonlinear (median median) 93.6 91.9
Nonlinear (pseduo-mean) 92.9 92.0
Nonlinear (pseudo-median) 93.3 92.2

Table 3.11: Percentage of total area under ROC curve when looking for differential probesets with
absolute log2 FC less or equal to 1. Higher areas are better.
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from this table were very similar to those of the previous comparison with the expression-level nor-

malization resulting in slightly smaller area and thus a lower number of differential probesets then

the corresponding probe-level normalization. All the non-linear normalization methods behaved

comparably.

3.4.4 Speed of complete data methods

Because loess normalizations are typically slow, the quantile normalization method is considerably

faster than the other two complete data methods. While this is true in theory, it was important to

examine this difference to see if it matters in practice. Some timing simulations using the R function

system.time() were made to empirically compare the method. The simulations were run using

R-1.8.1 with version 1.3.27 of the BioConductor affy package on a Fedora Core release 1 Linux

operating system. The machine was configured with an Athlon XP 2500+ processor and 1 GB of

RAM. For this simulation, only the 201800 PM probes for each HGU95A array were considered.

Both the cyclic loess and constrast methods established normalizing relations using a subset of 5000

randomly chosen PM probes.

Method 5 10 25 50

Quantile 1.2 2.3 5.9 12.4
Cyclic Loess 31.4 138.7 793.5 3144.8
Contrast 77.6 173.9 462.7 963.0

Table 3.12: Runtimes in seconds to normalize different numbers of arrays using complete data
methods.

Table 3.12 demonstrates how much faster quantile normalization is than either of the other two

methods. We observed that for anything over a smaller number of arrays, the speed gained by using

the quantile normalization was impressive.

3.5 Discussion

We have considered a number of normalization methods and the impact that they had on computed

expression values. There were several differences in the analysis completed in this dissertation and

that in Bolstad et al. (2003). Specifically, we removed any possible confounding with the back-

ground step by not making such any such adjustment. Probeset- and expression-level normaliza-
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tions were considered and the focus was on FC estimates and the detection of differential expression.

However, the results were similar to the conclusions found in Bolstad et al. (2003). Complete data

methods were better than baseline methods in both variance and bias measures. All of the nor-

malization methods successfully reduced variability of gene expression measures in comparison to

unnormalized data. However, scaling normalization did not remove non-linear differences between

arrays. Since these are typically observed in microarray experiments a normalization which deals

with this effectively should be preferred. It appeared that expression-level normalization seemed

to slightly reduce the ability to detect differential genes when compared with the corresponding

probe-level normalization. An examination of running times found that the Quantile normalization

was extremely quick relative to the other complete data methods. Since Quantile normalization

performed satisfactorily in the comparisons made in this chapter, it should remain the preferred

normalization for expression summarization.



59

Chapter 4

Summarization

This chapter considers the process of summarization, which is the final step in the production of a

gene expression measure. In Section 4.1, we introduce summarization and discuss the approach that

will be taken in the rest of the chapter. Section 4.2 introduces a number of summarization methods,

and Section 4.3 compares the performance of the methods on spike-in data. Finally, Section 4.4

discusses the results of our comparison.

4.1 Introduction

Typically, Affymetrix GeneChip microarrays have hundreds of thousands of probes. These probes

are grouped together into probesets. Within a probeset each probe interrogates a different part of

the sequence for a particular gene. Summarization is the process of combining the multiple probe

intensities for each probeset to produce an expression value. Averages (Affymetrix, 1999), robust

averages (Affymetrix, 2001a) and multi-chip models are among the summarization procedures that

have been used. The first multichip method was the Model Based Expression Index (MBEI) (Li and

Wong, 2001a). This was a multiplicative model with additive errors. To incorporate robustness, into

their method they had an algorithm for removing outlier probes, arrays and individual intensities as

part of the model fitting procedure. An alternative multi-chip approach is to fit an additive multi-chip

model with additive errors on the log2 scale. This has the advantage of stabilizing the variability

across intensities. The RMA method (Irizarry et al., 2003a), (Irizarry et al., 2003b), takes this
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approach. In this chapter, our examination of multi-chip models will also deal with additive models

on log2 transformed data.

4.2 Methods

In this section, all expression measures are expressed in the log2 scale. When describing the sum-

marization methods the following notation will be used:

β represents an expression value on the log scale

y represents a natural scale probe intensity (which may have previously been preprocessed

using a background and normalization)

NP is the number of probesets on the chip and NA is the number of arrays

In is the number of probes (or probe-pairs) in probeset n

the superscript n represents the probeset with n = 1, ...,NP

the subscript j represents the particular array with j = 1, . . . ,NA

the subscript i represents the probe in the probeset with i = 1, . . . , In

4.2.1 Single-chip Summarization

These methods use only probe information on an individual array to compute expression summaries

for that array. The expression values for each array are computed in isolation from information in

other arrays.

Average

In this method, the probe intensities within each probeset are averaged to produce an expression

measure. In particular, the estimated expression value for probeset n on array j is given by

β̂ (n)
j = log2

(

∑In
i=1 y(n)

i j

In

)

.
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An alternative approach is to use the geometric mean, which is equivalent to taking the mean of the

log2 probe intensities. In this case, the expression measure would be

β̂ (n)
j =

∑In
i=1 log2

(

y(n)
i j

)

In
.

The standard error for this expression summary would be given by

SE
(

β̂ (n)
j

)

=
Ŝ(n)

j√
In

where Ŝ(n)
j =

√

∑In
i=1

(

log2

(

y(n)
i j

)

−β̂ (n)
j

)2

In−1 .

Median

Rather than using the mean, which might be affected by outliers, another option is to use the median,

which is less affected by outliers. The expression summary values would be computed as

β̂ (n)
j = log2

(

Median
(

y(n)
1 j , . . . ,y(n)

In j

))

or alternatively, as

β̂ (n)
j = Median

(

log2

(

y(n)
1 j

)

, . . . , log2

(

y(n)
In j

))

.

These expression summaries are identical when there are an odd number of probes, but differ slightly

for probesets where there are an even number of probes.

Robust Average

Another method of summarization is to compute a robust average. Initially, Affymetrix using their

AvDiff measure (Affymetrix, 1999) proposed first removing the smallest and largest probes and

then taking the average of the remaining probes. In our framework, this expression summary would

be

β̂ (n)
j = log2





∑In−1
i=2 y(n)

[i] j

In−2





where y(n)
[i] j is the i’th order statistic. However, this is a somewhat arbitrary cut-off and possibly

insufficiently robust. Thus, we do not consider it further.
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Another approach suggested by Affymetrix was to use a 1-step Tukey biweight, taken on the log2

scale, to give an expression summary. In particular, the procedure proposed in Affymetrix (2002)

and Hubbell et al. (2002) is to compute

u(n)
i j =

log2

(

y(n)
i j

)

−M

cS + ε

where M is the median of the log2

(

y(n)
i j

)

and S is the median of the absolute deviation from M i.e.,

the MAD. Here c = 5 is a tuning constant and ε = 0.0001 is chosen to avoid the problem of division

by 0. Weights are defined by the bisquare function

w(u) =











0 when |u|> 1

(1−u)2 when |u|≤ 1

Finally, the expression measure is given by

β̂ (n)
j =

∑In
i=1 w

(

u(n)
i j

)

log2

(

y(n)
i j

)

∑In
i=1 w

(

u(n)
i j

) .

This is the summarization step used in the MAS 5.0 software (Affymetrix, 2001a). The standard

error for this 1-step Tukey biweight estimate is given by

SE
(

β̂ (n)
j

)

=

√

∑In

i=1,|u(n)i j|<1

(

log2

(

y(n)
i j

)

− β̂ (n)
j

)2
(

1−u(n)
i j

2
)4

∣

∣

∣

∣

∣

∑In

1,
∣

∣

∣
u(n)

i j

∣

∣

∣
<1

(

1−u(n)
i j

2
)(

1−5u(n)
i j

2
)

∣

∣

∣

∣

∣

.

The 1-step Tukey biweight is not the only method that can be used to compute a robust average.

This method falls into a larger class of methods referred to as M-estimators (Huber, 1981). An

M-estimator of location is defined by

minθ

N

∑
i=1

ρ (xi−θ) (4.1)

where ρ is a suitable function. Reasonable properties for ρ include symmetry ρ(x) = ρ(−x), a

minimum at ρ(0) = 0, positive ρ(x)≥ 0 ∀x and increasing as the absolute value of x increases, i.e.

ρ(xi)≥ ρ(x j) if |xi|> |x j|.

Equation 4.1 leads to solving
N

∑
i=1

ψ (xi−θ) = 0
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where ψ is the derivative of ρ . Note that for robustness, ψ should be bounded. This estimator is not

scale invariant, but it may be made so by rescaling. Thus, the estimator becomes the solution of

minθ

N

∑
i=1

ρ
(

xi−θ
s

)

Furthermore, there is a need to estimate s, where s is a scale estimate. One approach is to estimate

both s and θ using a system of equations. The approach that we use is to estimate s using the median

absolute deviation (MAD) which provides a robust estimate of scale. The above equation leads to

N

∑
i=1

ψ
(

xi−θ
s

)

= 0.

Now define ri = xi−θ
s and a weight function w(ri) = ψ(ri)

ri
. Then the previous equation can be

rewritten as
N

∑
i=1

w(ri)ri = 0

which is the same as the set of equations that would be obtained if we were solving the iteratively

reweighted least squares problem

min
N

∑
i

w
(

r(k−1)
i

)

r(k)
i

2

where the superscript (k) represents the iteration number. Since there are typically only 11-20 PM

probes in each probeset, it is computationally feasible for us to use fully iterated M-estimators. Table

4.1 summarizes the functions that we use for our M-estimators. Many of the methods require the

choice of a tuning constant. These constants are chosen such that the methods have 95% asymptotic

efficiency when applied to the standard normal. The tuning constant for each method is shown in

Table 4.2.

To better understand each of these functions, we have plotted the ρ , ψ and weight functions in

Figures 4.1, 4.2 and 4.3 respectively. For comparative purposes, we have also included plots of the

functions that we use for the standard mean (or linear regression) as labeled by L2. The ρ functions

are all somewhat less than the x2 of the L2 method, with several leveling out at a constant distance

from the center. Five of the methods, Cauchy, Geman-McClure, Welsch, Tukey and Andrews, have

redescending ψ functions. In other words, the distance between the value of ψ (x) and 0 increases

as |x| increases, reaches a maximum distance and then begins to decrease again as |x| continues to

increase. In the case of the Tukey and Andrews methods, the distance returns completely to 0. This

redecending property can cause the methods to converge to non-unique values depending on the
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Name ρ(x) ψ(x) w(x)

Huber

{

if |x|≤ k

if |x|> k

{

x2/2

k (|x|−k/2)

{

x

ksgn(x)

{

1
k
|x|

“Fair” c 2
(

|x|
c − log

(

1+ |x|
c

))

x

1+
|x|
c

1
1+
|x|
c

Cauchy c2

2 log
(

1+(x/c)2
)

x
1+(x/c)2

1
1+(x/c)2

Geman-McClure x2/2
1+x2

x

(1+x2)
2

1

(1+x2)
2

Welsch c2

2

(

1− exp
(

−
(

x
c

)2
))

xexp
(

−(x/c)2
)

exp
(

−(x/c)2
)

Tukey

{

if |x|≤ c

if |x|> c

{

c2

6

(

1−
(

1− (x/c)2
)3
)

c2

6

{

x
(

1− (x/c)2
)2

0

{

(

1− (x/c)2
)2

0

Andrews

{

if |x|≤ kπ
if |x|> kπ

{

k2(1− cos(x/k))

2k2

{

k sin(x/k)

0

{

sin(x/k)
x/k

0

Table 4.1: ρ , ψ and weight functions for some common M-estimators.

Name Tuning Constant

Huber 1.345
“fair” 1.3998
Cauchy 2.3849
Welsch 2.9846
Tukey 4.6851
Andrews 1.339

Table 4.2: Default tuning constants (k or c) for M-estimation ρ , ψ and weight functions.
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Figure 4.1: The ρ functions for some common M-estimators.

starting place. Finally, an examination of the weight function plots shows that all the methods give

lower weights to outliers. The Andrews and Tukey methods are very similar and give zero weight

to the most extreme outliers.

For the purposes of applying M-estimators to high density oligonucleotide array data, xi should

be replaced in the above discussion by log2

(

y(n)
i j

)

and thus the expression summary is given by

β̂ (n)
j = θ̂ . We can also compute standard errors for this expression estimate. In particular, the

asymptotic variance of an M-estimator is given by
∫

ψ2dF

[
∫

ψ ′dF ]2

where F is the distribution of the standardized resisuals, see Huber (1981) and Hampel et al. (1986)

for derivations. The estimated standard error for our estimators is thus given by

SE
(

β̂ (n)
j

)

=
1√
In

√

√

√

√

√

√

√

√

√

√

∑In
i=1 ψ

(

log2

(

y(n)
i j

)

−β̂ (n)
j

s

)2

/In

(

∑In
i=1 ψ ′

(

log2

(

y(n)
i j

)

−β (n)
j

s

)

/In

)2 .
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k’th largest PM

A very simple approach to expression value is to simply take the k’th largest PM probe intensity in

a probeset as the probeset expression summary. In particular, if y(n)
[1] j, . . . ,y

(n)
[In] j are the order statistics

for the probe intensities from probeset n on the j’th chip, then the expression value is given by

β̂ (n)
j = log2

(

y(n)
[In−(k−1)] j

)

where 1≤ k ≤ In.

It has been suggested that taking k = 2 is a desirable value. On the other hand, taking the largest

probe value (k = 1) would create more susceptibility to problems with saturation.

4.2.2 Multi-chip Linear Models

Multi-chip models are motivated by examining probe response patterns across arrays. Figure 4.4

shows the log2-scale probe response pattern for two probesets: one a spike-in probeset and the

other a randomly selected non-differential probeset, each across 42 arrays. The parallel behavior

in probe response across arrays and the relationship between concentration and expression level on

each array motivates multi-chip models with probe and chip response parameters. It is commonly

observed that the variability between different probes is larger than the variability of a single probe

across mulitple arrays. Since there are often probes on individual arrays that behave discordantly

due to non-biological causes, it is advantageous to fit the model robustly.

Linear Model

Ignoring robustness, the simplest model that can be used is that for each probeset n = 1, . . . ,NP we

fit

log2

(

y(n)
i j

)

= β (n)
j +α(n)

i + ε (n)
i j

where α (n)
i is a probe effect and ε (n)

i j are independently and identically distributed errors. Note

that we constrain ∑IN
i=1 α(n)

i = 0 to make the model identifiable. This model is fit using standard

linear regression techniques. The estimated β̂ (n)
j from the regression are the log2 expression values.

Similarly, the standard error estimate is given by

SE
(

β̂ (n)
j

)

=
1√
In

√

√

√

√

∑In
i=1 ∑Na

j=1

(

log2

(

y(n)
i j

)

− α̂(n)
i − β̂ (n)

j

)2

InNa− (Na + In−1)
.
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Figure 4.4: Probe response patterns for two probesets over 42 arrays. The probeset 207777 s at was
spiked-in at varying concentrations across the arrays. The probeset 207539 s at was a randomly
chosen non-differential probeset. The vertical scale differs.
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However, one drawback is that the standard error estimates will be equal across arrays.

Median Polish

The median polish algorithm (Tukey, 1977) is a method for fitting the following model

log2

(

y(n)
i j

)

= µ (n) +θ (n)
j +α(n)

i + ε (n)
i j

with constraints median(θ j) = median(αi) = 0 and mediani (εi j) = median j (εi j) = 0. The log2

expression values are given by β̂ (n)
j = µ̂(n) + θ̂ (n)

j . For our purposes the algorithm proceeds as

follows: first a matrix is formed for each probeset n such that the probes are in rows and the arrays

are in columns. This matrix is augmented with row and column effects giving a matrix of the form

e11 . . . e1NA a1
...

...
...

eIn1 . . . eInNA aIn

b1 . . . bNA m

where initially ei j = y(n)
i j , and ai = b j = m = 0. Next, each row is swept by taking the median across

columns (ignoring the last column of row effects) subtracting it from each element in that row and

adding it to the final column (the a1, . . . ,aIn ,m) . Then the columns are swept in a similar manner

by taking medians across rows, subtracting from each element in those rows and then adding to the

bottom row (the b1, . . . ,bNA ,m). The procedure continues, iterating row sweeps followed by column

sweeps, until the changes become small or zero. At the conclusion of this procedure µ̂ = m, θ̂ j = b j

and α̂i = ai. The ei j elements will be the values of the residuals. This procedure may converge to

different parameter estimates depending on whether rows or columns are swept first. In the analysis

in this dissertation, rows are always swept first.

One drawback to the median polish procedure is that it does not naturally provide standard error

estimates. Another is that we are restricted to balanced row-column effect models.

Robust Linear Model

This method again fits the model

log2

(

y(n)
i j

)

= β (n)
j +α(n)

i + ε (n)
i j
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where α (n)
i is a probe effect and ε (n)

i j are assumed to be independently and identically distributed

errors, with the constraint ∑IN
i=1 α(n)

i = 0 which makes the model identifiable. Rather than using

standard regression techniques, we use the M-estimation techniques as described previously.

Consider the general model, Y = Xb + ε with X as the design matrix, Y the vector of depen-

dent observations, b as the parameter vector and ε as the vector of errors. The fitting procedure

used is iteratively re-weighted least squares. Let W be a diagonal matrix of weights such that

wii = w
(

yi−xib̂
ŝ

)

for one of the weight functions defined in Table 4.1. ŝ is an estimate of scale for

which we use the median absolute deviation of the residuals, specifically ŝ = median|ε̂|/0.6745.

Then, the updated parameter estimates are given by

b̂ =
(

XTWX
)−1

XTWY

We continue iterating until convergence. Convergence can occur on different parameter estimates

depending on the starting point, if we use the weights from a method with redescending ψ function.

One good strategy is to use a fully iterated Huber M-estimator followed by a few steps using the

redescending ψ function.

Huber (1981) gives three forms of asymptotic estimators for the variance-covariance matrix of pa-

rameter estimates b̂.

κ2 ∑ψ2/(n− p)

(∑ψ ′/n)2 (XT X)−1 (4.2)

κ ∑ψ2/(n− p)

∑ψ ′/n
V−1 (4.3)

1
κ

∑ψ2

n− p
V−1 (XT X

)

V−1 (4.4)

where

κ = 1+
p
n

Var(ψ ′)
Eψ ′

(4.5)

V = XT Ψ′X

and Ψ′ is a diagonal matrix of ψ ′ values.

In our case, the first of these estimates give the same standard error for β̂ j across arrays which may

not prove useful for differentiating between arrays. The second and third forms provide standard

errors that differ. Huber (1981) warns against estimating the variance-covariance matrix, as one

would for a weighted least squares regression as it is “non-robust in general.”
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Many useful quantities for quality assessment of oligonucleotide arrays can be derived as by-

products from this robust linear model procedure (Collin et al., 2003).

A drawback to the robust linear model approach as taken to summarization is that it can become very

slow as the number of parameters in the model increases. Specifically, there are operations in the

iteratively reweighted least squares that are O
(

p3
)

, where p is the number of regression parameters.

Often, it makes sense to fit a single parameter for each treatment group rather than each array. Such

an approach will be discussed in Chapter 6.

4.3 Results

In this chapter, we make use of the Affymetrix U133A spike-in dataset described in Appendix A.2.

The key features of this data are that 42 probesets have been spiked-in at variable concentrations

against a background common cRNA. Our comparisons were limited to a representative subset of

the methods we proposed. Specifically, for the robust linear model approach we used three different

weighting schemes, Huber, Tukey Biweight and Geman-McClure, each progressively more robust.

So as to avoid potential confounding each summarization method was applied to data that had not

previously been preprocessed.

4.3.1 Assessing the Impact of Summarization Methods on Expression Values and

Fold-change Estimates

The first comparison made was to examine the slopes of a regression line fitted to a plot of observed

expression versus log spike-in concentration for the spike-in probesets. Table 4.3 contains the es-

timated slopes for each of the methods. Lower concentrations were those below 4 pM, the middle

concentrations were those between 4 pM and 128 pM, and the higher concentrations were those

above 128 pM. There did not seem to be a method that was the best, although second largest PM

which had lowest slope across all intensities was clearly the worst of the methods.

To examine how fold-change estimates were affected by summarization, we considered the IQR of

non-differential probesets and the slope of the regression of observed log FC against that expected

from the spike-in concentrations. These figures are in Table 4.4. The robust multi-chip model
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Method All Lower Middle Upper
Slope R2 Slope R2 Slope R2 Slope R2

Average Log 0.51 0.89 0.23 0.49 0.66 0.85 0.71 0.67
Log Average 0.49 0.88 0.20 0.32 0.66 0.86 0.69 0.74
Median Log 0.54 0.90 0.26 0.45 0.68 0.85 0.73 0.68
Tukey Biweight 0.54 0.90 0.25 0.46 0.68 0.86 0.74 0.69
Second Largest PM 0.49 0.86 0.20 0.21 0.66 0.83 0.63 0.73
Median Polish 0.52 0.89 0.23 0.46 0.69 0.85 0.69 0.64
Linear model 0.51 0.89 0.23 0.49 0.66 0.85 0.71 0.67
Robust Linear Model (Huber) 0.52 0.90 0.24 0.48 0.68 0.86 0.70 0.70
Robust Linear Model (Biweight) 0.53 0.89 0.24 0.42 0.69 0.86 0.72 0.71
Robust Linear Model (Geman-McClure) 0.53 0.88 0.22 0.36 0.71 0.86 0.70 0.68

Table 4.3: Slope (and R2) for spike-in probesets. The ideal would be a slope near 1 that is even
across intensities.

Method IQR Slope

Average Log 0.207 0.52
Log Average 0.214 0.52
Median Log 0.236 0.55
Tukey Biweight 0.225 0.55
Second Largest PM 0.244 0.51
Median Polish 0.205 0.54
Linear model 0.207 0.52
Robust Linear Model (Huber) 0.205 0.53
Robust Linear Model (Biweight) 0.205 0.54
Robust Linear Model (Geman-McClure) 0.210 0.54

Table 4.4: Assessing impact of summarization on FC estimates. IQR of fold-change estimates for
non-differential probesets. Slope estimates are for the regression of observed fold-change against
expected fold-change for spike-in probesets.
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Method 0% FP 5% FP AUC

Average Log 0.165 0.943 0.923
Log Average 0.127 0.933 0.905
Median Log 0.128 0.924 0.898
Tukey Biweight 0.133 0.932 0.907
Second Largest PM 0.094 0.885 0.849
Median Polish 0.146 0.945 0.923
Linear model 0.165 0.943 0.923
Robust Linear Model (Huber) 0.156 0.946 0.926
Robust Linear Model (Biweight) 0.141 0.945 0.925
Robust Linear Model (Geman-McClure) 0.137 0.934 0.914

Table 4.5: Assessing impact of summarization step on detecting differential expression using ROC
curve quantities.

Method Median IQR Range 80%

Average Log -0.07 1.17 2.26
Log Average -0.32 1.24 2.37
Median Log 0.00 1.05 2.28
Tukey Biweight 0.01 1.06 2.24
Second Largest PM -0.96 1.42 2.35
Median Polish 0.00 0.14 0.32
Linear model 0.00 0.16 0.31
Robust Linear Model (Huber) 0.00 0.15 0.30
Robust Linear Model (Biweight) 0.00 0.15 0.30
Robust Linear Model (Geman-McClure) 0.00 0.12 0.34

Table 4.6: Summary statistics on residuals of non-differential probesets from the summarization
methods.

methods had smaller IQR for the non-differential probesets. For the spike-in probesets, the slopes

were very similar across methods. The second largest PM performed the worst in both comparisons.

ROC curves were used to compare the ability of the different methods to detect true differential

expression. Table 4.5 shows three ROC curve quantities for each method. In particular, the true

positive rate when the false positive rate was 0%, true positive rate at 5% false positives and the area

under the curve up to 5% false positives. For all three quantities, higher values were better. The

linear model and log average methods seemed to do the best at 0% false positives, the robust linear

model was better at both 5% false positives and for AUC. Most methods did well in this comparison

except the second largest PM method which was clearly the worst since it had significantly smaller

values for each of the three quantities.

Finally, we considered the residuals for each of summary methods. A summary method that more

closely modelled the observed data and thus had smaller residuals was better. Table 4.6 gives the
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median residual, the IQR of the residuals and the range of the central 80% of the data. The most

important observation was that the multi-chip models greatly reduced the variability of the residuals,

because the probe-effect captured a great deal of the variability in the data.

4.3.2 Using Probe-level Models to Detect Outlier Probes and Arrays at the Probeset-

level

As observed in Collin et al. (2003), the weights and residuals generated by the model fitting pro-

cedure allowed the construction of quality assessment diagnostics. Collin et al. (2003) focused on

assessment at the array-level. That is, the focus was on identifying poorly performing chips. The

focus here is on assessments at the probeset-level.

for each probeset k = 1 to Np do

For each row count over j the number of w(k)
i j < Wτ call these values Ci+.

Set Er = ∑I
i=1Ci+/I

For each column count over i the number of w(k)
i j < Wτ call these values C+ j.

Set Ec = ∑J
j=1C+ j/J

Compute χ2
r = ∑I

i=1
(Ci+−Er)

2

Er

Compute χ2
c = ∑I

i=1
(C+ j−Ec)

2

Ec

if χ2
r > χ2

crit1 then

Check ∀i if Ci+ > CτJ then probe i is an outlier for probeset k

end if

if χ2
c > χ2

crit2 then

Check ∀ j if C+ j > Cτ I then array j is an outlier for probeset k

end if

end for
Table 4.7: A procedure for identifying outlier probes across arrays and outlier arrays across probes.

We constructed a procedure to identify probes and arrays that were the outliers. Specifically, we

used the observed weights to screen probesets for both poorly performing probes (across a number

of chips) and poorly performing arrays (as judged across a number of probes). The procedure is

outlined in Table 4.7. The process works by first defining extreme outliers as any probe where the

weight is smaller than some value Wτ . A useful choice for this is the value of the weight function
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Figure 4.5: Three Probesets determined to have probe outliers. The first has a noisy probe. The
second is a spike-in probeset, with probe 4 that does not seem to differentially hybridize except at
very high concentrations. The third is a non-differential probeset with some probes (1,2) that seem
to be cross hybridizing with a spike-in transcript.

at −3 or +3 from standard normal data. In the case of Huber’s weight function, Wτ < 0.4483.

Then a check is made for whether there are differences in the number of severe outliers across rows

and then across columns. with χ2
crit1 = χ2

I−1(1−0.001) and χ2
crit2 = χ2

J−1(1−0.001). For those

probesets where there are difference across rows, look for rows with more than CτJ outliers and call

these outlier probes. Similarly, for those probesets where there are differences across columns, look

for columns with more than Cτ I outliers and call these outlier arrays. A useful value of Cτ = 0.45. In

otherwords, flag probes or arrays where almost half or more are outliers. While this procedure was

not particularly sophisticated, more complex implementations would have involved perhaps the sum

of weights, it highlights how robust multi-chip models allowed troublesome probes and probesets

to be identified.

Figure 4.5 shows three of the probesets identified as having outlier probes, using the procedure

in Table 4.7. The Huber weighting scheme was used. In each of these plots the weights are on
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Figure 4.6: A probeset with five outlier chips. The two emphasized lines are averages over the
outlier and non-outlier groups.

the left hand side and the probe-pattern is shown on the right. Darker areas in the weights plots

had lower weights with arrays on the vertical axis and probes on the horizontal axis. The first

probeset 200066 s at was a non-spikein probeset which had two somewhat noisy probes (5, 7) as

was visible in both the weights plot and the probe-pattern plot. A spike-in probeset, 204513 s at,

had probe 4 non-responsive except at very high concentrations. The third probeset 213441 x at was

also a non-spikein and expected to be non-differential. However, the first two probes seemed to be

cross-hybridizing with one of the spike-in probesets. These three cases highlighted typical cases of

probesets with probe-outliers.

A probeset with array outliers is shown in Figure 4.6. Specifically, this probeset had five arrays

which had a number of low weight probes. The averaged probe-response pattern for the five outlier

arrays is given by one wide line and the other wider line is the averaged probe-response for the

other 37 arrays. It was interesting to note that the probe-response patterns differed between the two

groups of arrays. Particularly, probe five was the highest or near highest for the five outlier arrays

while considerably less than the maximum for the remaining arrays. Also the pattern across probes
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Summary Number Flagged Total Available

Outlier Probes 103 248152
Outlier Arrays 14 936600
Outlier Probesets 103 22300

Table 4.8: Outlier statistics for HGU-133A dataset.

6,7,8,9 did not seem to agree between the two groups. In essence, the outlier arrays that were chosen

in this manner are those where on a particular array the probeset has a different response pattern.

Given a method by which to identify outlier probes and arrays within probesets a sensible approach

was to summarize the dataset using these flags. The number of outlier probes, the number of outlier

arrays and the number of probesets with such outliers were useful quantities. Table 4.8 shows

these quantities for the HGU133A spikein dataset. The number of probes, arrays and probesets

flagged did not seem particularly large in either absolute or relative terms. Without doing a thorough

comparison of many datasets we could not determine whether this represents good or poor quality

data. However, it would seem sensible to assume that Affymetrix would produce public datasets

with great care under ideal laboratory conditions.

4.4 Discussion

In this chapter, we presented a number of methods of combining multiple probe intensities to pro-

duce probeset summary values. These methods were either single array methods, such as log Av-

erage, Median log and 2nd largest PM or multi-array methods such as the median polish and linear

model approaches. Some methods were robust like the Tukey biweight or robust linear model ap-

proach and others like Average Log had no provision for dealing with outliers. However, in the

comparisons made no significant difference in the performance of the methods at estimating FC

or detecting differential expression was found. The only method which could be said to have per-

formed poorly was 2nd largest PM.

The multichip models modelled the data very well, specifically the residuals from these models were

much smaller than from the single chip methods. In addition, a method for detecting outlier probes

across arrays and arrays across probes based upon output from the robust linear model approach

was proposed and its performance demonstrated.
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An important caveat about the conclusions of this chapter is that data could reasonably be expected

to be of the highest quality and also that there are only 42 probesets that should be changing between

arrays. In other words, there is not sufficient evidence to suggest that using a robust multi-chip

approach is unreasonable or unnecessary. Also this chapter looked at the summarization methods in

isolation from the other steps in preprocessing. Chapter 5 will explore how summarization interacts

with both background correction and normalization methodologies.
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Chapter 5

Expression Measures as a Three-step

Process

Earlier chapters discussed pre-processing as isolated steps, while this chapter considers combining

the different stages together. Section 5.1 introduces a three-step procedure for computing gene

expression values, Section 5.2 compares expression values computed using various pre-processing

methodologies, and Section 5.3 discusses the results.

5.1 Introduction

This chapter examines the process of producing a gene expression measure. Chapters 2, 3 and 4

were concerned with comparing different methodologies at each of the three pre-processing stages

(background, normalization, summarization), but did not consider how these methods interact. Ex-

pression values were only examined in the context of the RMA expression measure.

The procedure for generating expression measures can be considered as a three-step process. Let

X be raw probe intensities across all arrays, in the form of a matrix with probes in rows and arrays

in columns, and E be probeset expression measures with probesets in rows and arrays in columns.

Let B be an operation which background corrects probes on each array. In general, a background

method should operate in an array by array manner, that is each of the columns of X are treated

individually. Next, let N be the operation which normalizes across arrays. In other words it reduces
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variability between the columns of X. Finally, let S be the operation which combines probes together

to compute an expression measure. This operation could involve a possible transformation and may

work across arrays. The process of computing measures of expression can be written as

E = S (N (B(X))) . (5.1)

Many popular expression measures can be put into this three-step framework. In the case of RMA

expression values (Irizarry et al., 2003a), (Irizarry et al., 2003b) B is the convolution model method

described in Section 2.2.1, N is carried out by quantile normalization (Bolstad et al., 2003) and S

is an operation which takes log2 of the probes and fits a robust multi-chip linear model using the

median polish algorithm as described in Section 4.2.2.

For the MAS 5.0 expression measure (Affymetrix, 2001a), B is the location specific background

correction followed by subtracting the ideal mismatch from the PM probes, N is identity opera-

tion which leaves the data unchanged (in the MAS 5.0 framework normalization takes place after

summarization) and S is the process which takes log2 of the data and then uses the 1-Step Tukey

biweight.

Finally, for the MBEI (Li and Wong, 2001a), B is a modified version of the location specific cor-

rection outlined in Section 2.2.2 for the PM only model and both the location specific correction

and subtraction of MM from PM in the PM-MM model. The normalization N is a version of the

non-linear method outlined in Section 3.2.2. Summarization is carried out by fitting a multi-chip

multiplicative model with additive errors.

Any of the background, normalization and summarization methods discussed in this dissertation

can be combined together to produce an expression measure. However, for brevity, this chapter

will examine only a subset of possible combinations. Of particular interest will be how robustness

handles the noisier background methodologies and the effect that normalization has on the multi-

array summarization methods.

5.2 Results

In this section, the Affymetrix HGU133A spike-in experiment described in Appendix A.2 received

further consideration. This dataset was also considered in Chapter 4. An analysis based on the
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Dilution/Mixture dataset, described in Appendix A.5, where meaningful biological changes were

expected was also considered. Three background options were considered: no correction, the con-

volution method (a small background adjustment) and the location specific followed by the ideal

mismatch methodologies (a more serious background adjustment). Four normalization method-

ologies were used: none, scaling (a linear method), quantile (a non-linear approach), and quantile

probeset (a non-linear approach which seeks to preserve probe patterns). Finally, four options were

considered for the summarization process: average log, Tukey biweight (a robust average), median-

polish and robust linear model. Expression values were computed for all combinations of these

methods resulting in 48 different sets of expression values.

5.2.1 Analyzing the Spike-in Data

Expression Values, Fold-change and Detecting Differential Expression

An examination of slopes for regression of observed expression on spike-in concentration reaffirmed

the observations in Chapters 2, 3 and 4. The choice of background method had the largest effect

on the slope. Specifically, the median overall slope was around 0.52 for no background correction,

0.67 for the convolution method and 0.75 for the Affymetrix ideal MM methods. There were clear

differences between methods when partitioning into low, middle and high concentrations. With

the low concentrations the Affymetrix methodology had the highest slopes, while at the highest

concentrations the other two methods did slightly better. After removing the effect of background

method, there was no clear difference between slopes when partitioning by normalization method.

There was more difference between summarization methods, with the Tukey biweight being slightly

better at the low end, but not in the middle and high ranges. However, the differences between

summarization methods were of a much smaller magnitude than between background methods.

Thus, it was not possible to declare one summarization method a clear winner.

Similarly, when examining observed fold-change against expected fold-change, the highest slopes

were those where the location specific correction and ideal mismatch were used. There was no ap-

preciable difference in slopes between normalization methods or between summarization methods.

Ideally, non-differential probesets would have small fold-change estimates of little variability. Fig-

ure 5.1 shows boxplots of the IQRs of the fold-change for the non differential probesets stratified by

pre-processing method. It was clear that the background method had a large effect on the variability
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Figure 5.1: Boxplots of the IQR of FC for non-differential probesets stratified by pre-processing
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Normalization Background Number of Probesets Flagged Number of outliers
Probe Chip Both Probe Outliers Chip Outliers

None None 97 5 0 103 14
Quantile None 87 7 0 93 14
Quantile Probeset None 97 5 0 103 14
Scaling None 97 5 0 103 14
None Convolution 350 25 5 370 25
Quantile Convolution 363 13 0 371 13
Quantile Probeset Convolution 350 25 5 370 25
Scaling Convolution 350 25 5 370 25
None Affymetrix 5788 2711 663 6965 4126
Quantile Affymetrix 5746 2697 639 6887 4102
Quantile Probeset Affymetrix 5788 2711 663 6965 4126
Scaling Affymetrix 5788 2711 663 6965 4126

Table 5.1: Counts of probesets flagged varies across pre-processing methodologies. A large number
of flagged probesets implies that the multi-array linear model is not fitting well.

of the non-differential genes, with the Affymetrix correction leading to the largest IQRs. When

stratified by normalization method it is clear that non-linear normalization reduced variability the

greatest, but scaling also decreased the variability. The robust linear model approaches had slightly

lower IQRs than the single chip methods.

ROC curves for detecting differential expression showed that the largest differences in the curves

were due to the background methodology. Figure 5.2 shows the boxplots of the AUC up to 5%,

dividing the expression values by background methodology. As was seen in Chapter 2, the lo-

cation specific background followed by ideal mismatch correction significantly reduced the num-

ber of differential genes detected. To adjust for these large differences, we subtracted the median

AUC for each background method from the AUC computed for expression values using that back-

ground method. The adjusted AUC were compared by stratifying across normalization methods and

then across summarization methods. The non-linear normalizations had the highest areas under the

curve, while the linear normalization, did not do quite as well. However, it is important to note that

this dataset did not require a large amount of normalization. Similarly, we found that the robust

linear model approach had the highest AUC while the biweight method had the lowest AUC.

Effect of pre-processing on linear model approaches

In Chapter 4, we observed that a common probe-response pattern across arrays suggested fitting

multi-array models. Pre-processing can have an effect on this probe-pattern. Clearly, the ideal situ-
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ation would have been for the pre-processing to have a minimal effect on the parallelism. To inves-

tigate the possibility that the probe response was being significantly affected, the outlier detection

procedure proposed in Section 4.3.2 was applied to robust linear model summarized data after using

each of the background and normalization methods. If the probe-response pattern is significantly

altered then a greater number of probe and chip outliers should be observed. Table 5.1 shows the

number of flagged probesets, outlier probes and outlier arrays. In this comparison, the background

method had the largest effect on the number of outliers, with the Affymetrix background methodol-

ogy having clearly the worst effect. Looking at the summarization computed using the Affymetrix

corrections without normalization, we found that after dividing the probesets by average expression

value, an approximately equivalent number of outliers were found in the lowest third of the data,

3140 probesets, in the mid range, 2135 probesets, and 2561 probesets in the highest third of the

data. So it can be concluded that the Affymetrix correction significantly affects the probe pattern at

all intensity values. With the convolution method we found the bulk of the outliers had either low

average expression or high expression. Only 14 probesets in the mid range were flagged as having

some kind of outlier.

By design the quantile probeset normalization should not change the probe pattern. However, un-

expectedly we found that neither the scaling or quantile methods seemed to have adverse effects

on the probe-pattern. Based purely on the count of flagged probesets it appeared that quantile nor-

malization improved the linear fit when either no background correction or the Affymetrix methods

were used. Closer examination of the flagged probesets showed that a small number of borderline

probesets were either being included or excluded. Examining the average weight per probe showed

that on average the quantile normalized data had slightly lower weights, although the effect was

not large. Since the Affymetrix U133A spike-in dataset did not demonstrate a significant need for

normalization, there is not sufficient evidence to conclude that normalization does not have an effect

on the probe-response pattern.

5.2.2 Analyzing the Dilution/Mixture Data

Unlike the spike-in experiment, the dilution/mixture dataset did not have a known “truth”. That

is we did not know the true concentrations of any particular probeset, nor which were the truly

differential genes. Instead, a truth was generated by choosing differential genes using one subset of

the data and then tested on another subset of the data. Since the RMA expression measure without
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Method AUC (Rank) Method AUC (Rank) Method AUC (Rank)

None 0.81 (1) None 0.45 (4) Avglog 0.69 (1.6)
Convolution 0.70 (2) Quantile 0.77 (1.6) Median Polish 0.67 (3.0)
Affymetrix 0.50 (3) Quantile Probeset 0.77 (1.4) RLM 0.69 (1.8)

Scaling 0.70 (3) Biweight 0.63 (3.7)

Table 5.2: Effect of pre-processing on detecting differential expression as judged by AUC up to 5%
using the dilution data. AUC values are averaged across all other pre-processing methods. Ranks
(in parentheses) are averages of ranks across other pre-processing methods.

background correction was observed to perform well at detecting differential expression in affycomp

Cope et al. (2004), it was used to choose a set of differential genes. More sophisticated methods of

detecting differential expression are discussed in Chapter 6. First, we considered the 5 Liver arrays

and 5 CNS arrays both at 10µg. Arbitrarily, the 400 probesets with the most extreme FC estimates

were called differential, the remaining probesets were called non-differential. The 20 µg Liver and

1.25 µg CNS arrays were used to test the performance of the methods. Because there were such

large differences in concentration, and the biological differences were confounded with this, the

performance of the normalization methods was important.

Using the 400 probesets chosen as differential the performance of the different pre-processing meth-

ods can be compared. Table 5.2 compares the performance across each pre-processing stage using

the AUC under the ROC curve up to 5% false positives. In each case, the AUC was averaged

across all expression measures using that pre-processing method. As with the spike-in dataset, the

background adjustment had a large effect on the number of true positives identified. However, a

similarly sized difference in AUC was also observed for the normalization method. In particular,

the two quantile methods performed the best while there was a drop off in AUC with the scaling

method. The AUC was significantly lower when no normalization was applied. As with the spike-in

dataset, the biweight summarization has the lowest AUC, while the robust linear model and average

log methods performed well.

One method of assessing how well a linear model fits is by examining the R2, a higher R2 implying

a better fitting model. The fit of the robust linear model was assessed in this way. For each combi-

nation of background and normalization methods, the robust linear model was fit and the R2 value

computed for each probeset. For any fixed background method, there were small differences in R2

across normalization methods, with perhaps a very slight advantage to the standard quantile method.

However, larger differences were observed for any fixed normalization method across background
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methods. In particular, the larger the correction the smaller the R2 with the Affymetrix background

correction having the lowest R2 in general. Figure 5.3 compares the R2 values with average expres-

sion level for the three background adjustments. The background adjustments decreased the R2 the

most for the low intensity probesets. The convolution model, while decreasing the R2, still allowed

a very good fitting linear model to be fit across all ranges. The Affymetrix corrections had a large

effect on how well the model fit.

Figure 5.4 highlights how the probe pattern is affected by the convolution background and quantile

normalization. The figure shows the probe pattern for two probesets: one is non-differential and

the other is differentially expressed between liver and central nervous system. Different types of

lines have been used to represent the tissue source. For the non-differential probeset, there is an

apparent difference in expression level between the two tissue types, but a similar probe pattern.

The convolution background correction, does not remove this apparent difference in expression

level, but instead makes minor adjustments to the probe-pattern. When the data is instead quantile

normalized we see that the level of expression seems to coincide between all arrays and that the

probe-patterns matched up very well. Similarly, quantile normalizing the background adjusted data

yielded a reasonable plot with just slightly more variation in the value of each probe. Initially,

the differential probeset seemed to have little difference in level between liver and CNS, and the

background adjustment made little difference to this observation. After quantile normalization,

there was immediately clear separation between the liver and CNS tissues and very good matching

of arrays within each tissue group. There was no change in the probe pattern after normalization.

5.3 Discussion

This chapter considered the construction of an expression measure as a three-step procedure. Back-

ground correction, normalization and summarization procedures from Chapters 2, 3 and 4 were

combined to produce expression measures. The comparative effect that each pre-processing stage

had on the relationship between expression value and true concentration, on detecting differential

genes and on the probe-pattern was examined.

With the spike-in dataset, we found that background correction made the largest difference to the

slope between between computed expression value and the known concentration. More correction

gave a higher slope. The background correction also had the largest effect on how many differential
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Figure 5.4: Probe-patterns for a non-differential and a differential probeset: without pre-processing,
after convolution background, after quantile normalization and after both.
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genes were correctly identified. Both normalization and summarization had small effects on how

many differential genes were detected. However, this particular dataset did not require much nor-

malization. The background method was also observed to have a great influence over how well the

multi-array model was fitting.

The dilution/mixture dataset allowed us to assess how the methods performed with data where

there were true biological differences. There were also great apparent changes in the expression

level between the two tissues due to a technical difference, the quantity of cRNA hybridized, as

well as between individual arrays because of scanner differences. With this dataset, normalization

and background adjustment had comparable effects on the number of differential probesets cor-

rectly identified. An examination of how the probe-response pattern was affected by pre-processing

showed that with background adjustment the model fit less well. The normalization procedures did

not seem to reduce the ability of the multi-chip model to fit the data.

We have shown that the three-step framework is a reasonable method for producing expression mea-

sures, and that the conclusions we made about the individual pre-processing stages in the previous

chapters hold true in a more general context.
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Chapter 6

Probe-Level Model Based Test Statistics

for Detecting Differential Expression

6.1 Introduction

Chapter 4 discussed methods for producing expression summaries using a particular robust linear

model fit to probe intensity data. In this chapter that methodology is extended to more general

probe-level models and test statistics are developed for differential expression. We will compare the

performance of our probe-level model based test statistics against more traditional methods based

upon expression values.

6.2 Methods and Data

First, we define a probe-level model (PLM) as a model of the following form

y(k)
i j = f

(

X (k)
i j

)

+ ε (k)
i j (6.1)

where X (k)
i j are measured factors, for example treatment specific effects and probe-effects, and co-

variates for a particular probe and f is an arbitrary function. The indices i and j refer to probe and

array respectively. We use k to index probeset. In this dissertation we restrict ourselves to linear
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functions f . To fit the models, we use the M-estimation regression procedures described in Section

4.2.2.

In this chapter the focus will be on two specific PLM: the array effect model and the treatment effect

model. The array effect model has a parameter for each array. For each probeset k = 1, . . . ,K with

i = 1, . . . , Ik probes each on j = 1, . . . ,J arrays, we fit the following model

y(k)
i j = α(k)

i +β (k)
j + ε (k)

i j (6.2)

where y(k)
i j are pre-processed log2 perfect match intensities, α (k)

i are probe effects and β (k)
j are array

effects (log2 expression values). It is further assumed that E
(

ε(k)
i j

)

= 0 and Var
(

ε(k)
i j

)

= σ 2. To

make the model identifiable we use the constraint ∑Ik
i=1 α(k)

i = 0.

The treatment effect model has a parameter for each treatment grouping. This parameter is an

average expression level for that treatment group. This means that it will have fewer parameters than

the array effect model. For each probeset k = 1, . . . ,K with i = 1, . . . , Ik probes each on j = 1, . . . ,J

arrays, we fit the following model

y(k)
i j = α(k)

i + τ (k)
l j

+ ε (k)
i j (6.3)

where l j, the group membership for array j, is from 1, . . . ,L. Both α (k)
i j and ε (k)

i j are defined in the

same manner as the array effect model.

6.2.1 Test Statistics

Suppose each array can be classified by condition, for instance treatment or control, or perhaps even

into multiple different treatment groups. The goal is to determine which genes are differentially

expressed between conditions. We concentrate on pairwise comparisons between two treatment

groups, l and m. For each gene every test statistic is computed. Our first test statistic is raw log2

fold-change which is given by

FC = X̄l− X̄m (6.4)

where X̄l =
∑J

j=1 β jInd( j∈l)

∑J
j=1 Ind( j∈l)

is the mean expression level in group l and X̄m is similarly defined.

The standard two sample t-statistic is given by

tstd =
X̄l− X̄m
√

s2
l

nl
+ s2

m
nm

(6.5)
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where sl and sm are the sample standard deviations. One drawback with this test statistic is that a

stable gene with very small variability could result in a extremely large absolute tstd value.

We also consider a “robust” version of the two sample t-statistic as given by

trobust =
X̃l− X̃m
√

s̃2l
nl

+ s̃2m
nm

(6.6)

where X̃l and X̃m are the median expression values in group l and group m respectively and s̃l and

s̃m are the median absolute deviations. While such test statistics are statistically unappealing they

are sometimes used by practitioners in the real world.

To handle the potential drawbacks of the standard two sample t-statistic, a number of procedures

have been proposed to deal with the small denominator problem including Cyber-t (Baldi and Long,

2001), SAM (Tusher et al., 2001) and Broberg (2003) among others. Most of these method deal with

the problem by inflating the denominator in some manner. In this dissertation we have considered

two approaches to moderate the t-statistic. A simple moderated t-statistic is given by

tmod =
X̄l− X̄m

√

s2
l

nl
+ s2

m
nm

+ smed

(6.7)

where smed is the median of
√

s2
l

nl
+ s2

m
nm

across all genes. A much more sophisticated moderation is

also used, specifically, an empirical Bayes moderated t-statistics of the form described by Lönnstedt

and Speed (2002) and Smyth (2004) as implemented in the Bioconductor limma package. We call

this statistic tebayes.

The novel approach used in the chapter is to use the estimated variance covariance matrix from

the model as part of the test statistic. In particular, let Σ be the portion of the variance covariance

matrix related to the β from fitting the array effect model. Now consider the contrast vector c where

element j of c is 1
nl

if array j is in group l, − 1
nm

if in group m and 0 otherwise. Then, either

tPLM.1 =
c′β̂

√

c′diag(Σ̂)c
(6.8)

or

tPLM.2 =
c′β̂√
c′Σ̂c

(6.9)

can be used to test for differential expression between treatment groups l and m. It is important to

note that the numerator in this test-statistic is identical to that in the previous test statistics. Because
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we use M-estimation procedures to fit our models the off-diagonal elements of Σ are non-zero.

However, with an M-estimation with a fairly non-aggressive weighting scheme such as the method

proposed by Huber (1981), the off-diagonal values are typically much smaller than the diagonal

elements. In this chapter we have used equation 4.3 for the covariance matrix estimate.

6.2.2 Data

To compare the methods several datasets were used. First, several spike-in datasets where we have

known “truth” given by the spike-in information were considered. We then used data from a dilu-

tion/mixture study where it could be reasonably expected that a large fraction of genes would be

differential.

The HGU95A spike-in dataset from Affymetrix consists of 59 arrays upon which 14 probesets

have been spiked-in at a wide range of known concentrations in a Latin square design. A common

background RNA was hybridized to all 59 arrays and therefore aside from the spike-in probesets all

other probesets should be non differential across arrays. Other authors, such as Cope et al. (2004)

and Wolfinger and Chu (2002), have argued that several non-documented differential probesets

exist in this data. For the purposes of this comparison we restricted ourselves to the 14 documented

probesets. More details about this dataset are given in Appendix A.1.

We also used two spike-in datasets from GeneLogic. The first consisted of 34 HGU95A arrays upon

which 11 control probesets were spiked-in at varying concentrations, again in a latin square design,

against a common background of AML RNA. In most cases each concentration profile was repeated

on 3 replicate arrays. The second was composed of 36 HGU95A arrays where the same 11 control

probesets were spiked-in, but with a slightly different set of concentration profiles. A common

human tonsil mRNA was hybridized to all 36 arrays. Each concentration profile was repeated on 3

arrays. More details about these datasets are provided in appendices A.3 and A.4.

The Dilution/Mixture datasets from GeneLogic were comprised of 75 HGU95Av2 arrays. There

were 30 arrays from liver tissue, with 5 replicate arrays at each of 6 different concentrations (1.25,

2.5, 5, 7.5, 10, 20 µg of total cRNA) and a similar arrangement of 30 arrays from CNS tissue.

In addition 15 arrays were hybridized using a mixture of cRNA from the two sources, at a total

quantity of 10 µg , with 5 replicate arrays at each of 75:25, 50:50 and 25:75 ratios of liver:CNS.

More details for this dataset can be found in Appendix A.5.
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6.3 Results

6.3.1 Comparing PLM based test statistics with probeset summary based test statis-

tics

In our first comparison, we restricted ourselves to 8 arrays from the Affymetrix HGU95A spike-in

dataset. Specifically, we considered only the arrays from wafer number 1532 in experimental groups

M, N, O, P, Q, R, S, T, where the first four and second four experimental groups all had the same

concentration profiles. After using the standard RMA preprocessing steps (convolution background,

quantile normalization), the model shown in equation (6.2) was fitted. Then, all pairwise compar-

isons between spike-in concentration groups were considered, using 1 vs 1 (16 comparisons), 2 vs

2 (36 comparisons), 3 vs 3 (16 comparisons) or all 4 arrays in each group. For each comparison, we

computed each of the test statistics. It should be noted that when using only a single array in each

group, only FC, tPLM.1 and tPLM.2 are possible. When choosing differential genes we thresholded

on the absolute value of the test statistic. Methods were compared using an ROC curve, the true

positive (a differential gene is identified as differential) rate was on one axis and the false positive

(a non-differential gene is identified as differential) rate was on the other. The ideal would be to

identify all the differential genes without a single false positive. We averaged over all pairwise

comparisons to generate the ROC curve. The curve for 3 vs 3 comparisons is shown in Figure 6.1.

The two model based test statistics, tPLM.1 and tPLM.2, had the highest curves followed by the empir-

ical Bayes statistic tebayes, simple moderated statistic tmod and raw fold change FC. Both tStd and the

trobust performed poorly in comparison to the other methods. For all four comparisons, the model

based methods gave the highest curves (i.e. correctly detected more differential genes at any level

of false positves). In each case we also found that tPLM.1 and tPLM.2 almost coincided. This would

be expected using the Huber weights. A more aggressive weighting scheme, would be expected to

have larger differences.

Next, the study was expanded to all 24 arrays in experimental groups M, N, O, P, Q, R, S, and T.

Again, the array effect model in equation (6.2) was fitted. The primary interest was again in all

possible pairwise comparisons between the two concentration groups. Since it was time prohibitive

to examine all possible pairwise comparisons, 100 randomly chosen comparisons with an equal

number of arrays in each concentration group (i.e. from 1 vs 1 to 12 vs 12) were examined. As

previously done, the methods were compared using ROC curves. However, in this case focus was
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Figure 6.2: Comparing the performance of each test statistic using ROC curve quantities as the
number of arrays increase. The PLM model test statistics identify more differential genes at each
level of false positives. As the number of arrays increases, the t-statistics tend to outperform raw
FC. The vertical axis changes scales between plots.

placed on three quantities from the ROC curves, the true positive rate (TP) when the false positive

rate (FP) was 0, 0.01, and 0.05. The total area under the curve (AUC) up to 5% FP was also consid-

ered. Figure 6.2 shows these quantities against the number of arrays in the comparison for each of

the different test statistics. The PLM based test statistics outperformed the other methods using all

four criteria. As the number of arrays increased, the other methods tended to also outperform FC.

Next, we examined all 59 arrays in the Affymetrix HGU95A spike-in dataset and looked at all

possible pairwise comparisons between concentration groups (there were 91 possible comparisons).

This was done in two ways: fitting individual array effect models to each pairwise comparison and

fitting a single array effect model to the entire dataset. The first case is perhaps closer to what

would be done in practice when seeking to make a comparison between any two treatment groups,

while the second case is what is done when producing expression summaries for a dataset involving

many treatment groups. In each case, the entire dataset was preprocessed as a single group before
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Method Individual models Single model
0% FP 5% FP AUC 0% FP 5% FP AUC

FC 0.451 0.985 0.975 0.444 0.982 0.971
Std 0.323 0.982 0.956 0.301 0.975 0.952
Robust 0.160 0.939 0.857 0.144 0.935 0.852
Mod 0.437 0.987 0.975 0.413 0.980 0.970
PLM.1 0.653 0.991 0.979 0.540 0.951 0.930
PLM.2 0.657 0.991 0.979 0.539 0.951 0.930
Ebayes 0.514 0.988 0.978 0.450 0.986 0.974

Table 6.1: Statistics for ROC curves for complete Affymetrix dataset. Figures are proportion of
differential probesets identified when there is 0% or 5% false positives. AUC is area under ROC
curve up to 5% false positives. Higher values are better.

fitting the models. Summary statistics for the ROC curves are shown in Table 6.1. Using individual

models, the probe level model based test statistics were the best methods to use. 65.7% of the

differential genes were identified before a single non-differential gene was selected. When the

single model fitted to all 59 arrays was used fold-change and the two moderated t-statistics, tebayes

and tmod performed particularly well, while comparatively the PLM based test statistics performed

poorly except at the 0% false positives. Another feature of this comparisons was that the individual

models always outperformed the single model case by a small margin for all methods.

For each of the GeneLogic spike-in datasets, a single model was fitted to all the arrays. Using

the Genelogic tonsil dataset, we averaged across all 66 possible pairwise comparisons to produce

ROC curves. We found that raw fold-change seemed to perform the best, as depicted in Figure

6.3. The PLM t-statistics performed better than the other remaining methods. Using the GeneLogic

AML dataset, one array was removed since it did not have a concentration profile repeated on any

other array. Then to produce the ROC curve we averaged across the remaining 55 possible pairwise

comparisons, each between groups of 3 arrays. In this case, the PLM test statistics were slightly

better than raw fold-change, The remaining methods yielded fewer differential genes.

Using an overall array effect model, the PLM t-statistics were comparatively either very good (using

both the GeneLogic datasets) or poor (using the Affymetrix data). Examining the residuals from

the probe-level models allowed us to explain this disagreement. Figure 6.4 shows boxplots of the

residuals grouped by concentration group for three spike-in probesets (36202 at, 407 at, 39058 at)

and a randomly chosen non-differential probeset (41233 at) for the Affymetrix spike-in data. The

three spike-ins were typical of the spike-in probesets for this dataset and the non spike-in was

typical of the remaining probesets. Two observations were immediately apparent: the residuals are
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Figure 6.3: ROC curves for GeneLogic Tonsil and AML datasets.

much more variable for spike-in probesets and the spread of the residuals differed greatly between

concentrations. It was not difficult to envision how the process of creating spike-in mixtures could

add this variability. However, since the constant variance assumption was violated for these spike-

in probesets the PLM test statistics performed poorly. Similar plots (not shown) for the GeneLogic

datasets also displayed these problems, although to a much lesser degree, with the plots of residuals

for the GeneLogic AML spike-ins being very similar to the non spike-ins for the same dataset.

The spike-in datasets, which allowed us to compare the performance of methods when there were

only 11 or 14 probesets changing between conditions, were an artificial situation. Using the Gene-

Logic Dilution/Mixture data allowed us to compare the methods when more justifiable biological

differences could reasonably be expected. Since we did not have “truth,” as in the case of the spike-

in datasets, we constructed it. Initially, we selected all 60 arrays forming the Dilution series and

as a group computed RMA expression measures Irizarry et al. (2003a). The quantile normalization

step of this process dealt with the differences between dilution groups and scanner differences that

are a feature of this data. Two sample t-statistics were computed between the 30 liver and 30 CNS

arrays. Since we have a large number of arrays we expected this to work reasonably well. The 400

probesets with the most extreme t-statistics were then called differential and give us our “truth.”

Using these differential probesets gave us the opportunity to compare the performance of the test

statistics using the mixture data. More specifically, we combined the 5 arrays that were a 75:25

mixture and the 5 arrays that were a 25:75 mixture (both ratios are liver:CNS) and fitted the array

effect model using all 10 arrays. We then compared the performance of the test statistics by examing
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Figure 6.4: Boxplot of residuals from model by concentration group for three spike-in probesets
and a typical non spike-in probeset for the Affymetrix HGU95A spike-in dataset.
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Method 3 vs 3 4 vs 4 5 vs 5
0% FP 5% FP AUC 0% FP 5% FP AUC 0% FP 5% FP AUC

FC 0.007 0.886 0.697 0.008 0.888 0.703 0.005 0.888 0.708
Std 0.004 0.793 0.530 0.008 0.872 0.626 0.018 0.902 0.675
Robust 0.002 0.485 0.271 0.005 0.747 0.490 0.010 0.743 0.488
Mod 0.007 0.908 0.697 0.002 0.932 0.735 0.000 0.948 0.760
PLM.1 0.056 0.943 0.751 0.057 0.947 0.756 0.056 0.950 0.760
PLM.2 0.057 0.943 0.752 0.057 0.948 0.758 0.058 0.950 0.761
Ebayes 0.001 0.918 0.744 0.000 0.933 0.761 0.000 0.943 0.776

Table 6.2: Summary statistics for ROC curves based upon GeneLogic Mixture dataset.

all possible 3 vs 3, 4 vs 4, and 5 vs 5 comparisons of arrays. In each case, averaging across all the

pairwise comparisons allowed us to form the ROC curves. Table 6.2 summarizes the results for this

comparison. The PLM test statistics identified the most differential genes at the 0% and 5% false

positive levels. However, the empirical bayes statistic tebayes had a slightly higher total area under

the curve then any other method in the 4 vs 4 and 5 vs 5 comparison. Closer examination of the

ROC curve showed that tebayes exceeded other methods between 0.25% and 2.5% false positives. At

all other values the PLM test statistics did better.

6.3.2 Moderating the PLM test statistics

Another issue that was considered was whether moderation was helpful for the PLM test statis-

tics. To achieve a moderation, we applied a shrinkage estimation procedure to the individual vari-

ance/covariance matrices. Specifically, we shrink by updating the covariance matrix Σ(k) for any

probeset k by combining it with an averaged covariance matrix Λ. The adjustment was given by

Σ(k)
mod = ppriorΛ+

(

1− pprior
)

Σ(k) (6.10)

where Λ = ∑K
k=1 Σ(k)

K and pprior was a mixing proportion. If pprior = 0 then the test statistic was exactly

the unmoderated version. If pprior = 1 the test statistic was equivalent to a scaled version of fold-

change.

Careful examination of the performance of the test statistic allowed us to pick a reasonably universal

value for pprior. Using each dataset, we examined the total area under the ROC curve up to 5%

false positives as the mixing proportion was varied. The goal was to select the value for pprior

which maximised this area. Figure 6.5 shows this for several different datasets. Specifically, for

the 4 vs 4 comparison from the Affymetrix U95A dataset, the GeneLogic AML, mixture and tonsil
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datasets. For the cases where the PLM test statistic performed the best(the first three cases), a

pprior betwen 0.2 and 0.4 seemed to maximize the AUC. When fold-change performed better than

the PLM test statistic, as in the GeneLogic tonsil case, the AUC seemed to increase as pprior was

increased. This implied that a little moderation did not greatly reduce the AUC and often improved

it. Thus, based on these plots, a reasonable choice would be pprior = 0.3. This is because at 0.3 the

moderation in the cases examined did not reduce the AUC compared with no moderation. But is not

any case the optimal choice. As the number of arrays in each treatment group increases, the need

for any moderation would be expected to lessen. Future work will focus on developing an adaptive

procedure for choosing pprior.

6.3.3 Fitting the treatment effect model

Rather than fitting the array effect model, we then considered the possibility of fitting the treatment

group effect model. Using all 10 arrays of the mixture data, we fitted a probe-level model with

two group effects. Restricting ourselves to the tPLM.2 test statistic, we computed values of 0.05,

0.960 and 0.774 for the true positive rate at 0%, 5% false positives and proportion of the total area

under the curve up to 5% for the 5 vs 5 comparison. This compares favorably with the previous

methods. This removed the need to fit individual chip effects and since in practice fitting a model

with group effects is less time consuming, it should be the favored PLM method. An important thing

to note with the treatment effect model is that differences between tPLM.1 and tPLM.2 become greater

because the off diagonal elements of the covariance matrix tend to increase to a larger proportion of

the diagonal elements. In such cases, the method using the complete covariance matrix should be

preferred. Moderation of the test statistic performed in an equivalent way to the array effect model.

6.4 Discussion

This analysis has shown that information from the low-level analysis can be successfully used to

develop a test statistic for differential expression. This is opposed to the traditional methods which

were based on probeset summaries. Except for one notable exception, the PLM based test statistics

outperformed the other methods without requiring any moderation. However, our analysis also

showed that some moderation was still useful for improving the properties of our test statistic.
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In the one case where the PLM model performed significantly worse than the alternative methods,

when using the single model for the Affymetrix HGU95A dataset, it was found that the model did

not fit the data well. One interesting feature of this data is that sometimes one probe in the probeset

did not significantly change across concentrations. This led to large residuals from that particular

probe at some concentrations. The current model fitting procedure deals effectively with individual

outlier probe intensities on a particular chip, but it does not deal with probes that do not perform

over a significant number of arrays. In addition, it does not deal with probesets which have aberrant

behaviour on one particular array. This is an important issue in the context of the treatment effect

model. Future model fitting procedures should deal with these cases more effectively.
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Chapter 7

A Study of the Effects of Pooling on

Gene Expression Estimates

This chapter is a case study of the effects of pooling on gene expression estimates. Section 7.1

provides a brief introduction to the study and discusses why pooling could be used, Section 7.2 ex-

plains the experimental procedure and Section 7.3 presents an analysis of the data. Finally, Section

7.4 summarizes the conclusions of the investigation.

7.1 Introduction

High density oligonucleotide array data is being used in the study of many biomedical topics. In a

typical microarray experiment, mRNA from source material is hybridized to a microarray and the

resulting data is used to measure gene expression. When using multiple sources of mRNA, there

are two ways that the hybridization can be prepared: hybridize the mRNA from each individual

biological sample to an individual array, or combine the mRNA from multiple biological sources

(this process is called pooling) and hybridize it to one or more arrays. Sometimes pooling is done

because sufficient mRNA for one hybridization cannot be recovered from a single subject.

The idea of pooling sources of biological material together has long been known. Specifically,

Dorfman (1943) considered the effectiveness of pooling blood samples in reducing the number of
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tests required when trying to detect syphillis. Gastwirth and Hammick (1989) considered pooling

of blood to preserve annonimity when testing for HIV.

More recently, pooling in the context of microarray experiments has begun to draw great atten-

tion. It has been previously been assumed that pooling reduces biological variation between arrays.

Lockhart and Barlow (2001) state that “if genetically identical, inbred mice are not used, then it

is necessary to do more experiments or to pool mice to effectively average out differences due to

genetic inhomogeneity...the same considerations apply when using any other animal or human tis-

sue.” In addition Churchill (2002) notes that “pooling samples...increases precision by reducing the

variability of the experimental material itself. When variability between individual samples is large

and the units are not too costly, it may be worthwhile to pool samples.” It is for this reason that

the pooling process has been recommended. A number of microarray studies have used pooling

including Crnogorac-Jurcevic et al. (2002), Zhu et al. (2003), Chabas et al. (2001), Waring et al.

(2001), Saban et al. (2001), Enard et al. (2002) and Jiang et al. (2002).

The bias effects of pooling have been less well considered and have not been quantified. Accord-

ing to Hamadeh et al. (2002), “pooling may cause misinterpretation of data if one animal shows a

remarkably distinct response, or lack of response.” It is very important to know whether the ex-

pression level of a gene in one individual sample can drive the expression level of that gene in a

pool.

Through the use of a dataset consisting of 36 MGU74av2 Affymetrix GeneChips® we examine

the effects that pooling has on the detection of differential expression and the variance and bias

of measures of differential expression. This is important because very often the ultimate goal of a

microarray experiment is to determine a set of differentially expressed genes.

7.2 Materials and Methods

The data and details of the experimental procedures were provided by Eun Soo Han from the De-

partment of Biological Science, University of Tulsa in Tulsa, Oklahoma. All arrays were hybridized

by Yimin Wu, at the University of Texas Health Science Center in San Antonio, Texas.
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7.2.1 Animal Subjects

Male C57BL/6 mice were bred in the Animal Core of the Program Project. Parent mice were pur-

chased from Jackson Laboratories (Bar Harbor, ME). All mice were fed ad libitum (AL) Harlan

Teklad LM-485 mouse/rat sterilizable diet 7912 (Madison, WI). They were kept on a cycle of 12

hour darkness 12 hour light (lights on at 0600 h). Sentinel mice were tested monthly for Endopara-

sites, Ectoparasites, Mouse Hepatitis Virus, Sendai Virus, Mycolpasma, Pneumonia Virus of Mice,

Theiler’s Mouse Encephalomyelitis Virus, and Minute Virus of Mice by a Veterinary Pathologist

in Laboratory Animal Resources at the University of Texas Health Science Center at San Anto-

nio. Every six months, the presence of murine virus antibodies: CAR Bacillus, Ectromelia Virus,

Epizootic Diarrhea of Infant Mice, Lymphocytic Choriomeningitis Virus, Minute Virus of Mice,

Mouse Adenovirus (M.Ad-FL), Mouse Adenovirus (M.Ad-K87), Mouse Hepatitis Virus, Murine

Cytomegalovirus, Mycoplasma pulmonis, Parvovirus, Pneumonia Virus of Mice, Polyoma, Re-

ovirus, Sendai Virus, and Theiler’s Mouse Encephalomyelitis Virus was monitored with serum

samples from sentinel animals by BioReliance Co. (Rockville, MD). All tests were reported as

negative. All procedures involving use of the mice were approved by the Institutional Animal Care

and Use Committee of the University of Texas Health Science Center and the Subcommittee for

Animal Studies at the Audie L. Murphy Memorial Veterans Hospital.

7.2.2 Tissue Collection and RNA Preparation

Livers from nine 5 month-old and nine 13 month-old mice were collected between 1000 hours and

1200 hours, and total RNA was extracted from each liver using the previously described procedure

(Sambrook et al., 1989).

7.2.3 Screening of mRNA by Affymetrix GeneChip Arrays

The mRNA expression of individual and pooled liver RNA from nine 5 month-old and nine 13

month-old male C57BL/6 mice were measured using Affymetrix Murine Genome U74 A Version

2 Genechips. For the pool samples, liver RNAs from 3 animals were pooled to generate three pool

samples of 5 or 13 month old animals and the array hybridization was repeated three times with

targets synthesized separately from the same source of pooled RNA. For individual samples, array
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Figure 7.1: Three sources of mRNA were either individually hybridized to arrays (singles) or mixed
together and hybridized to a set of arrays (pools).

hybridization was performed once for each sample of individual RNA.

For sample preparation and hybridization the vendor’s protocols were followed. First, total RNA

was subjected to a cleanup process using the RNeasy Total RNA Isolation Kit (Quagen, Valencia,

CA). Ten µg of the cleaned total liver RNA were converted to double-stranded cDNA using Su-

perScript Choice System (GIBCO/BRL, Rockville, MD) and T7-(dT)24 primer (GENSET Corp,

La Jolla, CA). Biotin labeled cRNA was synthesized from the cDNA with BioArray High Effi-

ciency RNA Transcript Labeling Kit (Affymetrix, Santa Clara, CA). After being cleaned up the

purified cRNA was fragmented to sizes ranging from 35 to 200 bases by incubating at 94°C for

35 min. Fifteen µg of the fragmented cRNA were hybridized to a GeneChip at 45° C with 45

rpm for 16 hours. After hybridization, the GeneChips were washed and stained with streptavidine-

phycoerythrin, and then the signals were amplified with a biotinylated antibody, goat Ig G and an-

other staining with streptavidine-phycoerythrin using the Fluidics Station (Affymetrix, Santa Clara,

CA). The GeneChips were scanned with the Hewlett Packard GeneArray Scanner (Affymetrix,

Santa Clara, CA).

In this experiment, we referred to the young mice by the labels 1, 2, 3, 4, 5, 6, 7, 8 and 9, and to

the middle aged mice using 1
′
, 2
′
, 3
′
, 4
′
, 5
′
, 6
′
, 7
′
, 8
′

and 9
′
. The single arrays were referred to by

the source of mRNA and the pooled chips were refered to by using the notation i jk(r) where i, j,k

designated the source of mRNA and r referred to a replicate number. The pools were all created

from consecutively numbered sets of three mice. Thus, valid pools were 123, 456, 789, 1′2′3′, 4′5′6′

and 7′8′9′. Figure 7.1 demonstrates how the groups of singles and pools were hybridized to arrays
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in this experiment for the young mice 1, 2, and 3.

7.2.4 Data Preprocessing

As described in the earlier chapters, a three-stage process for computing expression estimates

was used: background correction, normalization and probeset expression summarization. Back-

ground/signal adjustment was done for each array, using the convolution method discussed in Chap-

ter 2. The data from all 36 arrays was normalized together using quantile normalization Bolstad et al.

(2003). Expression summarization was computed using a robust linear model, which was discussed

in Chapter 4. The Huber influence function Huber (1981) gave the weights used for the iteratively

re-weighted least squares procedure.

7.3 Results

7.3.1 Data Quality

It is important to consider the quality of the data because poor quality data could potentially have

quite serious consequences on the conclusions we make in this study. In this section, we consider

two methods of judging quality based upon the modeling procedure.

The robust linear model procedure produces a weight for each (PM) probe at the conclusion of the

model fitting procedure. These may be used to identify chip defects and other procedural artifacts

(Collin et al., 2003). Figure 7.2 plots the robust model weights as pseudo chip images for a rep-

resentative selection of chips. The lighter colors represent high weight probe intensities, while the

darker colors are probe intensities that have been down weighted by the model fitting procedure.

There are some minor defects visible on some of the chips, but most chips do not show evidence of

serious problems. However, the pooled chip, 7′8′9′(1), has a darker image and is down weighted

much more than the other chips, which could cause a potentially confounding increase in variability.

Another quality display is to boxplot the computed standard errors from the model and look for

discordant arrays (Collin et al., 2003). For each probeset, the standard errors of the array effects are

normalized to have the median equal to 1 across arrays. These are referred to as the Normalized
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Figure 7.2: Pseudo-chip images of robust linear model weights for selected chips. Darker areas
indicate areas of lower weight. Most of the arrays (not shown) are similar to 1′, 6′ and 456(3) with
no or only small defects. The image plots for 7′8′9′(1) and 789(1) have a lot of down weighting
indicating the possibility of poor data.
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Figure 7.3: Boxplots by chip of standard errors of expression values, standardized to median 1. Two
pool chips 7′8′9′(1) and 789(1) stand out as having larger standard errors relative to other chips.

Unscaled Standard Errors (NUSE). The boxplots of the normalized standard errors of the gene

expression estimates for each array are shown in Figure 7.3. This plot allows identification of arrays

where the standard errors for the gene expression estimates are generally larger relative to the other

arrays. It is of importance to note that two pooled arrays, 7′8′9′(1) and 789(1), performed poorly

using this diagnostic tool.

7.3.2 Variance

To compare the variability of expression values within an age group between single and pooled

arrays, we plotted the log ratio of the variance across three singles to the variance across the three

replicates of pooled chips using the same mRNA sources against the average expression value. Plots

for all 6 groupings are shown in Figure 7.4. Surprisingly, the variability of the gene expression
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Figure 7.4: Comparison of the variability of singles to the variability (across replicates) or the
corresponding pools. The figures are plots of the log2 of the variance ratio of singles to pools
against the average expression value. The curve is a lowess smoother fit. Above the x-axis the
variance of the pools is greater than the variance of the singles.

measures was higher for the pooled data than the corresponding gene expression measures of the

singles in most of the cases. The particularly large differences between the single and pooled arrays

for both young mice 7, 8, 9, and middle aged mice 7′, 8′, 9′, were most likely driven by poorer

quality data, as can be seen from the earlier discussion on data quality.

Another variance comparison that can be made is to compare the variability across all the single

arrays within an age group against the variability of the pooled array from the same mRNA. For

each probeset, we compared the variance of the expression value across all singles against the within

group component of variation from an ANOVA fitted to the pooled arrays. Figure 7.5 shows the log

ratio of the single variance to within pooled variance, with the variability of the pools and singles

being similar (or slightly lower in the case of the young-aged chips). After removing the two poorer

quality chips, 7′8′9′(1) and 789(1) from the analysis, we found that a little over 50% of the probesets
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Figure 7.5: Comparing the variance of all singles to the within pool variance of the pool arrays by
looking at the log ratio of the single variance to the pool variance, a ratio above zero indicates that
the variance of the pools is less than the variance of the singles. After removing two poor quality
arrays from the analysis, we find that the variance of the singles is higher than the variance of the
pooled arrays.

had higher variability in the singles. Either way, the differences were not great.

It is also possible to look at the variability of differential expression estimates. In particular, we

looked at computing the differential expression between groups of three young and three middle

age mice. The three arrays could be either three arrays where RNA from an individual sample was

hybridized or three replicate arrays hybridized with pooled RNA. Thus, measures of differential
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expression would be

Msingle
i jk,lmn =

∑
c=i, j,k

β̂c

3
−

∑
c=l,m,n

β̂c

3

Mpool
i jk,lmn =

3
∑

r=1
β̂i jk(r)

3
−

3
∑

r=1
β̂lmn(r)

3

which are the log2 fold-change values.

For example, to make a comparison between middle aged mice 4′, 5′, 6′ and young mice 1, 2, 3, we

could either use the difference between the averages of the single arrays Msingle
4′5′6′,123 or the difference

between the averages of the pooled arrays Mpool
4′5′6′,123 . Since there is no direct correspondence be-

tween the mice in the young age group and those in middle age group, 1, 2, 3 do not correspond to 1′,

2′, 3′. Comparisons can be made across any of the groups of three. Figure 7.6 shows the variability

of the differential expression statistic for all single-to-single or pool-to-pool comparisons. The vari-

ability of the comparisons between pooled arrays was less than the variability of the corresponding

comparisons between groups of single chips.

7.3.3 Bias

It is useful to examine whether the expression values of genes in a pool are driven by just one of

the individuals. For each single array we compared the ratio of each gene’s expression value on

that chip to the average expression of all the other singles within the same age group. This allowed

the identification of probe sets where the gene expression for that sample alone differed from the

majority. For the purposes of this investigation such probesets were called “outliers”.

To choose these probesets, a cutoff Csingle was used. When the absolute value of the estimated

fold change was greater than Csingle, we called the probeset differentially expressed for that array

within its age group. Table 7.1 shows the number of probesets chosen in this way for Csingle = 1 and

Csingle = 0.75 . The young-aged singles had more outlier genes than the middle age singles.

To perform a similar comparison for the pooled arrays, we averaged across the replicates of a par-

ticular pool and compared this to the average across both sets of three replicates of the other two

pools. Differential probesets were selected and a different cutoff was used, which shall be referred

to as Cpool.
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Figure 7.6: Boxplots of relative expression values for each middle age to young comparison. The
expression values are less variable for the pool to pool comparisons than in the corresponding com-
parison between singles.
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Array Number of Probesets selected
Differential at Csingle = 1 Differential at Csingle = 0.75

1′ 14 30
2′ 11 20
3′ 41 106
4′ 24 59
5′ 11 27
6′ 9 25
7′ 12 17
8′ 6 16
9′ 29 63
1 61 167
2 46 127
3 95 279
4 49 123
5 37 107
6 26 77
7 36 106
8 37 95
9 41 128

Table 7.1: Number of probesets selected when comparing expression values on one array to average
expression on all other arrays from the age group. So array 3 has 41 probe sets where the relative
expression of that probe set compared to the average expression in the 8 other middle age arrays
has estimated fold change greater than 1. We will refer to these probe sets showing differential
expression on just one array as “outliers”.
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Figure 7.7: MA-plots: (a) using a cut-off Csingle = 1 to detect outlier probesets from one individual
array 4′ vs average across all the other middle age arrays. (b) comparing the average across the
replicates of a pool, 4′5′6′, against the averages over all the replicates of pooled middle aged arrays.
The numbers on the plot indicate the single array where that probeset was called an “outlier”. The
horizontal lines indicate the cut-off Cpool = 2

3 .

By making some assumptions, we could relate Csingle and Cpool. We assumed that the observed

expression-level of a probeset on any array was given by the sum of the true expression value and

a random error, that is βobs,i = β + ε ′i where ε ′i had expectation 0 and variance σ 2 . Independence

between chips was also assumed.

Assuming equal variance in both singles and pools (σ 2
single = σ 2

pool), we found that Cpool = 2
3Csingle .

If instead we had assumed that the mRNA averages out across a pool, an assumption in Kendziorski

et al. (2003), that is σ 2
pool =

σ2
single

3 , then Cpool =
√

4
27Csingle. This assumption was not borne out by

our data.

Figure 7.7 demonstrates the selection method for one particular comparison. First, we chose probe-

sets that were discordant on only one single array, 4′, as compared to the average across all singles.

Then, we saw how many of these genes were also discordant when comparing the average across

replicates of a pool (4′5′6′) to average expression across all other pooled chips in the age group. The

numbers on the plot identify the individual upon which the probeset was identified as an outlier.

Table 7.2 summarizes the results for all of the possible pool to all other pools comparisons. A large



118

Array type Cpool = 2
3 Cpool = 1

2 Cpool =
√

4
27 Cpool = 3

4

√

4
27

1′2′3′ 13(0.77) 27(0.78) 47(0.51) 107(0.49)
4′5′6′ 14(0.78) 34(0.79) 83(0.33) 290(0.2)
7′8′9′ 18(0.77) 34(0.56) 104(0.18) 286(0.2)
123 4(0.5) 12(0.5) 38(0.31) 154(0.23)
456 13(0.54) 46(0.32) 141(0.10) 495(0.08)
789 27(0.41) 62(0.37) 138(0.13) 334(0.14)

Table 7.2: Number of probesets selected when comparing average over replicates of a pool to av-
erage of all other pools. The figures in parentheses are proportions of these probe sets that have
been ruled as an “outlier” in the single chip comparison in Table 7.1. The first two columns are the
cut-offs given and assuming equal variances in both pooled and single arrays. The second column
two columns correspond to the assumption that the mRNA averages in the pool. This assumption
did not seem justified by our data.

proportion of the “outlier” probesets in the pools were also “outlier” probes in one of the singles

that was a part of that pool. A greater proportion of the outliers for the middle-aged pooled arrays

were accounted for by probesets that were outliers in our single array comparison.

7.3.4 Detecting Differential Expression

Selecting genes that were differentially expressed between young and middle aged mice, required

computing Msingle
i jk,lmn and Mpool

i jk,lmn for each of the possible combinations. We used a cutoff Cdiff,single =

1. Keeping our assumption of equal variance it was simple to show that Cdiff,pool =
√

16
27Cdiff,single.

Results for differential gene expression are shown in Table 7.3. The simple cutoff selected many

more genes for comparisons based upon single chips than the same comparisons between pooled

arrays using the same mRNA, as would have been expected from the variance comparison. Of

particular importance, was the proportion of probesets chosen as differential that were accounted

for by “outlier” genes from just one chip. About 80% of the probesets called differential from

the pooled arrays were accounted for by a probeset that was shown to be an “outlier” in just one

probeset.

7.3.5 Temporal Effects in Experimental Procedure

In the process of analyzing this dataset, it became apparent that a poor experimental design was

used. In particular, the arrays were hybridized over a period of months, sometimes with replicate
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Singles (a) 123 456 789

1’2’3’ 157 (0.47) 174(0.21) 127(0.32)
4’5’6’ 72 (0.51) 94 (0.57) 117 (0.35)
7’8’9’ 99 (0.46) 91 (0.32) 84 (0.63)

Pools (b) 123 456 789

1’2’3’ 20 (0.80) 24 (0.75) 20 (0.90)
4’5’6’ 21 (0.81) 21 (0.81) 21 (0.90)
7’8’9’ 21 (0.67) 41 (0.51) 30 (0.80)

Table 7.3: Number of differential probesets chosen using a fixed cutoff for estimated fold change
for (a) comparisons between groups of singles and (b) pools. The figures in parentheses are the
proportions of the differential probesets that were ruled “outliers” on one of the single arrays in the
comparison.

pool arrays being hybridized many months apart. This suggested that perhaps chips hybridized at

the same time may be more similar than those many months apart.

We made use of hierarchal clustering to examine whether chips were more similar because of bio-

logical source or because of hybridization order. Specifically, we used the average linkage method

with Manhattan distances. A dendrogram was used to examine the clustering results. The leaf nodes

for more closely related chips were closer on the tree.

Figure 7.8 shows the dendrogram for the middle-aged mice arrays. It is important to note that the

middle-aged mice arrays were hybridized over a period of about three months. If the variability due

to hybridization order was unimportant, then we would have expected biologically similar arrays

to be grouped together. However, this was not observed. In almost every case, arrays that were

hybridized on the same date were more closely grouped together than chips from the same biological

source. In particular, the third replicates of each of the three pooled arrays 1′2′3′(3), 4′5′6′(3) and

7′8′9′(3) were all hybridized on the same date and all group togethered, instead of with other arrays

from pools of the same material. The three groupings of single arrays were also hybridized on the

same dates, whereas replicate pool chips were done on separate dates. For example 1′, 2′ and 3′

were all hybridized on March 28, but the three replicates of 1′2′3′ were hybridized on March 28,

April 4 and May 22.

The young mice arrays were hybridized over a period of 6 months. A dendogram for clustering of

the young mice arrays is shown in Figure 7.9. As with the middle-aged mice, arrays were grouped

together by hybridization date. While it is less clear than with the middle-aged mice, it was still

somewhat apparent that singles were hybridized on closer dates than the pool arrays using the same
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RNA sources and thus also were more similar in expression values.

7.4 Discussion

The statistical effects of pooling in microarray experiments have been considered before in Kendziorski

et al. (2003). One drawback to this study was that it drew conclusions based on RT-PCR data for

only 6 genes from 5 mice. Peng et al. (2003) also considered the statistical implications of pooling.

However, their study was restricted to simulated data and also some “virtual” pooled data. In con-

trast to these studies, our dataset was many scales of magnitude larger and contained high-density

oligonucleotide microarray data where actual pooling has occured.

No clear evidence was found that the expression values for arrays using pooled mRNA were less

variable than when using arrays hybridized with mRNA from only an individual. A further exam-

ination of the data suggested that because of poor experimental design, this observation was due

to temporal variation between pooled arrays that was smaller or non-existent for the single mRNA

source arrays. However, what should be apparent from our study is that if there were benefits in vari-

ance reduction that may have been achieved by pooling, they were not large enough to overcome

poor experimental design.

Although, Kendziorski et al. (2003) considered possible benefits in variance reduction, they did

not address the potential for bias to be introduced by pooling. This chapter, on the other hand,

highlighted the dangers of pooling and its effect on bias. Using pooled mRNA leaves open the risk

that a discordant gene from just one individual could drive the expression value of the gene in the

pool. This was found to be the case, as both Figure 7.7 and Table 7.2 demonstrated.

In addition, this study examined the effects of pooling on differential expression, a topic not ad-

dressed in Kendziorski et al. (2003). We saw that the same outlier genes could also have significant

effects when determining differential expression in a pool. In particular, we found that a much larger

proportion of genes determined to be differential using the pooled arrays were also genes where the

expression value from just a single individual was discordant.
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Appendix A

Datasets

A.1 Affymetrix HGU95A Spike-in dataset

This was provided by Affymetrix for the purposes of developing and comparing expression algo-

rithms. It was used as part of the process of developing and validating the Affymetrix Microarray

Suite (MAS) 5.0 expression algorithm.

This dataset had a Latin Square design consisting of 14 spiked-in gene groups in 14 experimental

groups. The concentrations used were 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024

pM. Table A.1 shows how the spike-in concentrations were applied to each of the experimental

groups. The dataset consists of a total of 59 arrays of which there are 3 replicate arrays for each

group except group C for which there was only 2 replicates. The known spike-in concentrations

give us a “truth” by which to judge methods of computing expression summaries.

Affymetrix states that two of the probesets, 407 at and 36889 at, have poorly behaving probe pairs

and should be excluded from the analysis. However, we shall make no such exclusions.

A.2 Affymetrix HGU133A Spike-in Dataset

This was a second spike-in dataset provided by Affymetrix. It consisted of 42 HG U133A arrays.

The 42 spike-in transcripts were organized into a Latin square design. Table A.2 shows the design
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Grp 37777 at 684 at 1597 at 38734 at 39058 at 36311 at 36889 at
A 0 0.25 0.5 1 2 4 8
B 0.25 0.5 1 2 4 8 16
C 0.5 1 2 4 8 16 32
D 1 2 4 8 16 32 64
E 2 4 8 16 32 64 128
F 4 8 16 32 64 128 256
G 8 16 32 64 128 256 512
H 16 32 64 128 256 512 1024
I 32 64 128 256 512 1024 0
J 64 128 256 512 1024 0 0.25
K 128 256 512 1024 0 0.25 0.5
L 256 512 1024 0 0.25 0.5 1
M 512 1024 0 0.25 0.5 1 2
N 512 1024 0 0.25 0.5 1 2
O 512 1024 0 0.25 0.5 1 2
P 512 1024 0 0.25 0.5 1 2
Q 1024 0 0.25 0.5 1 2 4
R 1024 0 0.25 0.5 1 2 4
S 1024 0 0.25 0.5 1 2 4
T 1024 0 0.25 0.5 1 2 4

Grp 1024 at 36202 at 36085 at 40322 at 407 at 1091 at 1708 at
A 16 32 64 128 0 512 1024
B 32 64 128 256 0.25 1024 0
C 64 128 256 512 0.5 0 0.25
D 128 256 512 1024 1 0.25 0.5
E 256 512 1024 0 2 0.5 1
F 512 1024 0 0.25 4 1 2
G 1024 0 0.25 0.5 8 2 4
H 0 0.25 0.5 1 16 4 8
I 0.25 0.5 1 2 32 8 16
J 0.5 1 2 4 64 16 32
K 4 2 4 8 128 32 64
L 4 4 8 16 256 64 128
M 4 8 16 32 512 128 256
N 4 8 16 32 512 128 256
O 4 8 16 32 512 128 256
P 4 8 16 32 512 128 256
Q 8 16 32 64 1024 256 512
R 8 16 32 64 1024 256 512
S 8 16 32 64 1024 256 512
T 8 16 32 64 1024 256 512

Table A.1: Concentrations in pM for spike-in probesets in Affymetrix HG U95A dataset. There
were three replicates for every group except group C making a total of 59 arrays.
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Group 1 2 3 4 5 6 7

EXP 1 0 0.125 0.25 0.5 1 2 4
EXP 2 0.125 0.25 0.5 1 2 4 8
EXP 3 0.25 0.5 1 2 4 8 16
EXP 4 0.5 1 2 4 8 16 32
EXP 5 1 2 4 8 16 32 64
EXP 6 2 4 8 16 32 64 128
EXP 7 4 8 16 32 64 128 256
EXP 8 8 16 32 64 128 256 512
EXP 9 16 32 64 128 256 512 0
EXP 10 32 64 128 256 512 0 0.125
EXP 11 64 128 256 512 0 0.125 0.25
EXP 12 128 256 512 0 0.125 0.25 0.5
EXP 13 256 512 0 0.125 0.25 0.5 1
EXP 14 512 0 0.125 0.25 0.5 1 2
Group 8 9 10 11 12 13 14

EXP 1 8 16 32 64 128 256 512
EXP 2 16 32 64 128 256 512 0
EXP 3 32 64 128 256 512 0 0.125
EXP 4 64 128 256 512 0 0.125 0.25
EXP 5 128 256 512 0 0.125 0.25 0.5
EXP 6 256 512 0 0.125 0.25 0.5 1
EXP 7 512 0 0.125 0.25 0.5 1 2
EXP 8 0 0.125 0.25 0.5 1 2 4
EXP 9 0.125 0.25 0.5 1 2 4 8
EXP 10 0.25 0.5 1 2 4 8 16
EXP 11 0.5 1 2 4 8 16 32
EXP 12 1 2 4 8 16 32 64
EXP 13 2 4 8 16 32 64 128
EXP 14 4 8 16 32 64 128 256

Table A.2: Concentrations in pM for spike-in probesets in Affymetrix HG U133A dataset. There
were three replicates for every experimental group.

and table A.3 shows the names of the spike-in probeset.

A.3 GeneLogic AML Spike-in Dataset

Provided as part of a group of spike-in datasets by GeneLogic, and made publically available. This

dataset consists of 34 HG U95A arrays. There are 11 probesets that have been spiked in at 12 dif-

ferent concentrations ranging from 0.5 pM to 100 pM. Table A.4 shows the 12 distinct experimental

groups and the corresponding spike-in concentrations. The experiment used a latin square design to

assign spike-in probeset concentrations. Each group had three replicate arrays except group 1, for
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Group Probesets
1 203508 at, 204563 at, 204513 s at
2 204205 at, 204959 at, 207655 s at
3 204836 at, 205291 at, 209795 at
4 207777 s at, 204912 at, 205569 at
5 207160 at, 205692 s at, 212827 at
6 209606 at, 205267 at, 204417 at
7 205398 s at, 209734 at, 209354 at
8 206060 s at, 205790 at, 200665 s at
9 207641 at, 207540 s at, 204430 s at
10 203471 s at, 204951 at, 207968 s at
11 AFFX-r2-TagA at, AFFX-r2-TagB at, AFFX-r2-TagC at
12 AFFX-r2-TagD at, AFFX-r2-TagE at, AFFX-r2-TagF at
13 AFFX-r2-TagG at, AFFX-r2-TagH at, AFFX-DapX-3 at
14 AFFX-LysX-3 at, AFFX-PheX-3 at, AFFX-ThrX-3 at

Table A.3: Names of probesets in each spike-in group for Affymetrix HG U133A dataset.

Grp BioB-
5 at

DapX-
M at

DapX-
5 at

CreX-
5 at

BioB-
3 at

BioB-
M at

BioDn-
3 at

BioC-
5 at

BioC-
3 at

DapX-
3 at

CreX-
3 at

1 25 37.5 50 75 100 3 5 12.5 0.5 1 1.5
2 37.5 50 75 100 3 5 12.5 0.5 1 1.5 2
3 50 75 100 3 5 12.5 0.5 1 1.5 2 25
4 75 100 3 5 12.5 0.5 1 1.5 2 25 37.5
5 100 3 5 12.5 0.5 1 1.5 2 25 37.5 50
6 3 5 12.5 0.5 1 1.5 2 25 37.5 50 75
7 5 12.5 0.5 1 1.5 2 25 37.5 50 75 100
8 12.5 0.5 1 1.5 2 25 37.5 50 75 100 3
9 0.5 1 1.5 2 25 37.5 50 75 100 3 5
10 1 1.5 2 25 37.5 50 75 100 3 5 12.5
11 1.5 2 25 37.5 50 75 100 3 5 12.5 0.5
12 2 25 37.5 50 75 100 3 5 12.5 0.5 1

Table A.4: Concentrations for GeneLogic AML Dataset in pM for the 11 spike-in transcripts. Each
group has three replicates except group 1.

which there is only one array.

These arrays were all hybrized with common acute myeloid leukemia (AML) complex background,

with only the concentrations of the control spike-in probesets differing.

A.4 GeneLogic Tonsil Spike-in dataset

This dataset is also part of a the same series of spike-in experiments as the dataset discussed in Ap-

pendix A.3. It also contains 11 control spike-in probesets at concentrations ranging from 0.5 to 100
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Grp BioB-
5 at

DapX-
M at

DapX-
5 at

CreX-
5 at

BioB-
3 at

BioB-
M at

BioDn-
3 at

BioC-
5 at

BioC-
3 at

DapX-
3 at

CreX-
3 at

1 0.5 0.75 1 1.5 2 3 5 12.5 25 50 75
2 0.75 1 1.5 2 3 5 12.5 25 50 75 100
3 1 1.5 2 3 5 12.5 25 50 75 100 0.5
4 1.5 2 3 5 12.5 25 50 75 100 0.5 0.75
5 2 3 5 12.5 25 50 75 100 0.5 0.75 1
6 3 5 12.5 25 50 75 100 0.5 0.75 1 1.5
7 5 12.5 25 50 75 100 0.5 0.75 1 1.5 2
8 12.5 25 50 75 100 0.5 0.75 1 1.5 2 3
9 25 50 75 100 0.5 0.75 1 1.5 2 3 5
10 50 75 100 0.5 0.75 1 1.5 2 3 5 12.5
11 75 100 0.5 0.75 1 1.5 2 3 5 12.5 25
12 100 0.5 0.75 1 1.5 2 3 5 12.5 25 50

Table A.5: Concentrations for GeneLogic Tonsil Dataset in pM for the 11 spike-in transcripts. Each
group has three replicates.

pM arranged in a Latin square design, as shown in Table A.5. Each group had three replicates mak-

ing for a total of 36 arrays. These arrays were hybridized with a common complex RNA produced

from pooled tonsil tissue samples.

A.5 GeneLogic Dilution/Mixture dataset

This dataset consists of 75 HGU95A v2 arrays. It consists of arrays to which RNA from either

Liver, Central Nervous System (CNS) or a mixture of the two sources has been hybridized. Table

A.6 shows the concentrations that were used. In each case there were 5 replicate arrays each scanned

on a different scanner.
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Type Conc. Liver Conc. CNS
Dilution 20 0
Dilution 10 0
Dilution 7.5 0
Dilution 5 0
Dilution 2.5 0
Dilution 1.25 0
Dilution 0 20
Dilution 0 10
Dilution 0 7.5
Dilution 0 5
Dilution 0 2.5
Dilution 0 1.25
Mixture 7.5 2.5
Mixture 5 5
Mixture 2.5 7.5

Table A.6: GeneLogic Dilution/Mixture study. 5 arrays were used at each concentration level.
Concentrations are in µg.
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