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Outline
• Introduction
• Pre-processing methodologies as they relate to

Two channel arrays
Affymetrix GeneChips (a popular single channel 
array)
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Biological Question

Experimental Design

Microarray Experiment

Pre-processing
Low-level 
analysis

Image Quantification

Normalization

Summarization

Background Adjustment

Quality Assessment

High-level 
analysisEstimation Testing Annotation ….. Clustering Discrimination

Biological verification and interpretation

Images

Expression Values
Array 1 Array 2 Array 3

Gene 1 10.05 9.58 9.76

Gene 2 4.12 4.16 4.05

Gene 3 6.05 6.04 6.08

Workflow for a 
typical microarray
experiment
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Introduction to preprocessing
• Pre-processing typically constitutes the initial (and 

possibly most important) step in the analysis of 
data from any microarray experiment 

• Often ignored or treated like a black box (but it 
shouldn’t be)

• Consists of:
Data exploration
Background correction, normalization, 
summarization
Quality Assessment 

• These are interlinked steps
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Background Correction/Signal 
Adjustment

• A method which does some or all of the following:
Corrects for background noise, processing effects on 
the array
Adjusts for cross hybridization (non-specific binding)
Adjust estimated expression values to fall across an 
appropriate range
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Normalization
“Non-biological factors can contribute to the variability of data ...

In order to reliably compare data from multiple probe arrays, 
differences of non-biological origin must be minimized.“1

• Normalization is the process of reducing unwanted variation 
either within or between arrays. It may use information from 
multiple chips.

• Typical assumptions of most major normalization methods 
are (one or both of the following):

Only a minority of genes are expected to be differentially 
expressed between conditions 
Any differential expression is as likely to be up-regulation as 
down-regulation (ie about as many genes going up in 
expression as are going down between conditions)

1 GeneChip 3.1 Expression Analysis Algorithm Tutorial, Affymetrix technical support
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A brief word on the term 
“Normalization”

• Many use the term “normalization” to refer to 
everything being discussed in this session. In other 
words they treat “normalization” and “pre-
processing” as being synonymous with each other.

• I view normalization as just one of the steps in the 
process (although a very important one).
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Summarization
• Reducing multiple measurements on the same 

gene down to a single measurement by combining 
in some manner.

• Most relevant to Affymetrix Arrays as we will see a 
little later ….
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Quality Assessment
• Need to be able to differentiate between good and 

bad data. 
• Bad data could be caused by poor hybridization, 

artifacts on the arrays, inconsistent sample 
handling, …..

• An admirable goal would be to reduce systematic 
differences with data analysis techniques.

• Sometimes there is no option but to completely 
discard an array from further analysis. How to 
decide …..
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Two-channel arrays
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Image analysis for two color 
arrays

• The raw data from a cDNA microarray experiment 
consist of pairs of image files, 16-bit TIFFs, one for 
each of the dyes.

• Image analysis is required to extract measures of 
the red and green fluorescence intensities for each 
spot on the array.
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Image analysis
1. Addressing. Estimate location of 
spot centers.

2. Segmentation. Classify pixels as 
foreground (signal) or background.

3. Information extraction. For 
each spot on the array and each 
dye

• signal intensities;
• background intensities; 
• quality measures.

R and G for each spot on the array.
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Good: low bg, lots of d.e. Bad: high bg, ghost spots, little d.e.

Co-registration and overlay offers a quick visualization,
revealing information on colour balance, uniformity of
hybridization, spot uniformity, background, and artifiacts
such as dust or scratches

Red/Green overlay images



14Signal/Noise = log2(spot intensity/background intensity)

Histograms



15Slide 3 of the swirl data: used in all that follows.
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Tools for exploring the data

R vs G

Important: Always log, always rotate

Bad
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Tools for exploring the data

log2R vs log2G

Important: Always log, always rotate

Better
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Tools for exploring the data

M=log2R/G vs A=log2√RG

Important: Always log, always rotate

Best
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MA-plot
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Spatial plots: background
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Spatial plots: log ratios (M)

No reason to constrain 
yourself to red/green 
when visualizing
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Boxplots
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Background correction
• Normally this is just a matter of subtracting the background 

value in the Red channel of the foreground Red intensity 
and the same for the Green channel intensities for each 
spot.

i.e. R’= R – Rb, G’=G-Gb

where R, Rb, G, Gb are all from the output of the image 
analysis stage (there are some who use models based on 
these to derive corrections)

• From here on in we will assume that background correction 
has taken place.
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Background Correction
• Note that the image analysis program you use can 

have quite an impact at this stage by drastically 
increasing variability, particularly in low intensities.

Note this not swirl.3

GenePix Spot
Same array, different image analysis and background correction
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Normalization for two color 
arrays

• Why?
To correct for systematic differences 
between samples on the same slide, or 
between slides, which do not represent 
true biological variation between samples.

• How do we know it is necessary? 
By examining self-self hybridizations, 
where no true differential expression is 
occurring.
We find dye biases which vary with overall 
spot intensity, location on the array, plate 
origin, pins, scanning parameters,…. 
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Levels of Normalization 
for two color arrays

• Within-slides
Which genes to use?
Location normalization
Scale normalization

• Paired-slides (dye-swap)
Self-normalization

• Between-slides
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False color overlay Boxplots within Grid plots MA-plots

Self-self hybridizations
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log2R/G → log2R/G - c = log2R/ (kG)

Standard practice (in most software)
c is a constant such as the mean or median log ratio.

Scaling Normalization
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MA-plot after scaling

Before Scaling After Scaling
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Intensity dependent 
adjustment

log2 R/G  ->  log2 R/G - c(A) = log2 R/(k(A)G)
• Compute c by robust locally weighted regression of 

M on A. 
• We typically use a loess curve for this purpose.
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MA-plot after loess 
normalization

After global loess normalization
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Boxplot: print-tip effects remain 
after global loess normalization
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Within print-tip group 
normalization

• In addition to intensity-dependent variation in log ratios, 
spatial bias can also be a significant source of systematic 
error. Most normalization methods do not correct for spatial 
effects  produced by hybridization artifacts or print-tip or 
plate effects during the construction of the microarrays.

• It is possible to correct for both print-tip and intensity-
dependent bias by performing LOWESS fits to the data 
within print-tip groups, i.e.
log2 R/G  ->  log2 R/G - ci(A) = log2 R/(ki(A)G),

• where ci(A) is the LOWESS fit to the MA-plot for the ith grid 
only.
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Print-tip normalized data: 
MA-plot
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Print-tip normalized data:
boxplot
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Smoothed histograms of M 
values

Black: unnormalized; red: global median; green: global lowess; blue: print-tip lowess
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MSP titration series
(Microarray Sample Pool)

Control set to aid intensity- dependent normalization

Different concentrations

Spotted evenly spread across the slide

Pool the 
whole library
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Yellow: GAPDH, tubulin                                                        Light blue: MSP pool / titration

Orange: Schadt-Wong rank invariant set Red line: lowess smooth

MSP normalization compared to other methods
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Composite normalization

Before and after composite 
normalization

-MSP lowess curve
-Global lowess curve
-Composite lowess curve
(Other colours control spots)

ci(A)=αAg(A)+(1-αA)fi(A)
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Paired-slides: dye-swap
• Slide 1, M = log2 (R/G) - c
• Slide 2, M’ = log2 (R’/G’) - c’

Combine by subtracting the normalized log-ratios:
[ (log2 (R/G) - c) - (log2 (R’/G’) - c’) ] / 2

≈ [ log2 (R/G) + log2 (G’/R’) ] / 2
≈ [ log2 (RG’/GR’) ] / 2
provided c = c’.
Assumption: the normalization functions are the
same for the two slides.
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Checking the assumption

MA plot for slides 1 and 2: it isn’t always like this.
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Result of self-normalization
(M - M’)/2 vs. (A + A’)/2
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One way of taking scale 
into account

MADi

MADii =1

I∏I

Assumption: All slides have the same spread in M

True log ratio is mij where i represents different slides and  
j represents different spots.

Observed is Mij, where
Mij = ai mij

Robust estimate of ai is

MADi = medianj { |yij - median(yij) | }
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Scale normalization: between 
slides

Boxplots of log ratios from 3 replicate self-self hybridizations.

Before normalization After location normalization After scale normalization
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Before normalization After location normalization After scale normalization

Scale normalization: swirl 
dataset



46

Other between slide 
normalizations

• Quantile normalization applied separately to R and 
G channels (after within chip normalization)
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Two Channel Summary
• Background Correction

Taking too much off can greatly increase variability
• Normalization

Reduces systematic (not random) effects
Makes it possible to compare several arrays
Use logratios (M vs A-plots)
Lowess normalization (dye bias)
MSP titration series – composite normalization
Pin-group location normalization
Pin-group scale normalization
Between slide scale normalization
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Single-channel arrays
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Affymetrix GeneChip
• Commericial mass produced high 

density oligonucleotide array 
technology developed by Affymetrix 
http://www.affymetrix.com

• Single channel microarray

Image courtesy of Affymetrix.

http://www.affymetrix.com/
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Probes and Probesets

Typically 11 probe(pairs) in a probeset
Latest GeneChips have as many as:
54,000 probesets

1.3 Million probes
Counts  for HG-U133A plus 2.0 arrays
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Two Probe Types

TAGGTCTGTATGACAGACACAAAGAAGATG

CAGACATAGTGTCTGTGTTTCTTCT

CAGACATAGTGTGTGTGTTTCTTCT

PM: the Perfect Match

MM: the Mismatch

Reference Sequence
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Image Analysis
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Chip dat file – checkered board – close up pixel selection
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Chip cel file – checkered board

Courtesy:  F. Colin
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Boxplot raw intensities

Array 1 Array 2 Array 3 Array 4
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Density plots
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Pairwise MA plots
Array 1

Array 2

Array 3

Array 4

M=log2arrayi/arrayj
A=1/2*log2(arrayi*arrayj)
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Boxplots comparing M

Array 1 Array 2 Array 3 Array 4

M
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RMA Background Approach
• Convolution Model
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Observed
PM

Signal
S

Noise
N

( )Exp α ( )2,N μ σ

( )

2

E

,

1

a pm a
b bS PM pm a b

a pm a
b

a o b
b

μ σ α

φ

σ

φ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−−
= = +

−

= − −

+Φ −

=

Φ



60

GCRMA Background 
Approach

• PM=Opm+Npm+S
• MM=Omm+Nmm

• O – Optical noise
• N – non-specific binding
• S – Signal

• Assume O is distributed Normal 
• log(Npm )and log(Nmm ) are assumed bi-variate 

normal with correlation 0.7 
• log(S) assumed exponential(1)
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GCRMA continued
• An experiment was carried out where yeast RNA was 

hybridized to human chips, so all binding expected to be 
non specific. 

• Fitted a model to predict log intensity from sequence 
composition gives base and position effects

• Uses these effects to predict an affinity for any given 
sequence call this A. The means of the distributions for the 
Npm, Nmm terms are functions of the affinities.
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Non-Biological variability is a 
problem for single channel 

arrays

5 scanners  for 6 dilution groups

Lo
g2

 P
M

 in
te

ns
ity
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Normalization
• In case of single channel microarray data this is 

carried out only across arrays.
• Could generalize methods we applied to two color 

arrays, but several problems:
Typically several orders of magnitude more probes on 
an Affymetrix array then spots on a two channel array
With single channel arrays we are dealing with 
absolute intensities rather than relative intensities.

• Need something fast
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Quantile Normalization
• Normalize so that the quantiles of each chip are 

equal. Simple and fast algorithm.  Goal is to give 
same distribution to each chip.

Target 
Distribution

Original 
Distribution
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It works!!
Unnormalized Scaling

Quantile 
Normalization
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It Reduces Variability
Fold changeExpression Values

Also no serious bias effects. For more see Bolstad et al (2003)

Unnormalized Quantile Scaling

Unnormalized Quantile Scaling
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Summarization
• Problem:  Calculating gene expression values.
• How do we reduce the 11-20 probe intensities for each 

probeset on to a gene expression value?
• Our Approach

RMA – a robust multi-chip linear model fit on the log scale
• Some Other Approaches

Single chip
AvDiff (Affymetrix) – no longer recommended for use due to many 
flaws
Mas 5.0 (Affymetrix) – use a 1 step Tukey-biweight to combine 
the probe intensities in log scale

Multiple Chip
MBEI (Li-Wong dChip) – a multiplicative model on natural scale
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General Probe Level Model

• Where f(X) is function of factor (and possibly 
covariate) variables (our interest will be in linear 
functions)

• is a pre-processed probe intensity (usually log 
scale)             

• Assume that

f( )kij kijy ε= +X

E 0kijε⎡ ⎤ =⎣ ⎦
2Var kij kε σ⎡ ⎤ =⎣ ⎦

kijy
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Parallel Behavior Suggests 
Multi-chip Model

Array Array
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Probe Pattern Suggests 
Including Probe-Effect
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Probe Number Probe Number
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Also Want Robustness

P
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The RMA model

where
is a probe-effect   i= 1,…,I
is chip-effect (             is log2 gene 
expression on array j) j=1,…,J
k=1,…,K is the number of probesets

( )( )2log N Bkij kijy PM=

kij k ki kj kijy m α β ε= + + +

kiα

kjβ k kjm β+
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Median Polish Algorithm
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RMA mostly does well in 
practice 

Detecting Differential Expression Not noisy in low intensities

RMA

MAS 5.0
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One Drawback
RMA MAS 5.0

Linearity across concentration. GCRMA fixes this problem
Concentration Concentration
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GCRMA improve linearity
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An Alternative Method for Fitting 
a PLM

• Robust regression using M-estimation
• In this talk, we will use Huber’s influence function. 

The software handles many more.
• Fitting algorithm is IRLS with weights dependent on 

current residuals ( )kij

kij

r
r

ψ
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Variance Covariance 
Estimates

• Suppose model is 
• Huber (1981) gives three forms for estimating variance 

covariance matrix
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We Will Focus on the 
Summarization PLM

• Array effect model

With constraint

kij ki kj kijy α β ε= + +

1
0

I

ki
i
α

=

=∑
Probe Effect

Array Effect

Pre-processed
Log PM intensity
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Quality Assessment
• Problem: Judge quality of chip data

• Question: Can we do this with the output of the 
Probe Level Modeling procedures?

• Answer: Yes. Use weights, residuals, standard 
errors and expression values.
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Chip pseudo-images
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An Image Gallery

http://PLMImageGallery.bmbolstad.com

“Tricolor”

“Crop Circles”

“Ring of Fire”

http://plmimagegallery.bmbolstad.com/
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NUSE Plots
Normalized
Unscaled
Standard
Errors
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RLE Plots

Relative
Log
Expression
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Summary of One Channel 
Arrays

• Background correction
RMA model
GCRMA model

• Normalization
Quantile normalization

• Summarization
Robust multi-chip probe level modeling

• Quality Assessment
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