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Outline
• Introduction to probe-level data analysis
• Probe-level analysis using the RMA framework and 

extensions
• Example analysis using BioConductor tools
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Biological Question

Experimental Design

Microarray Experiment

Pre-processing
Low-level 
analysis

Image Quantification

Normalization

Summarization

Background Adjustment

Quality Assessment

High-level 
analysisEstimation Testing Annotation ….. Clustering Discrimination

Biological verification and interpretation

Images

Expression Values
Array 1 Array 2 Array 3

Gene 1 10.05 9.58 9.76

Gene 2 4.12 4.16 4.05

Gene 3 6.05 6.04 6.08

Workflow for a 
typical microarray
experiment
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Introduction to Probe-Level 
Analysis

• Also known as “Pre-processing” or “low-level analysis”
• Pre-processing typically constitutes the initial (and possibly 

most important) step in the analysis of data from any 
microarray experiment 

• Often ignored or treated like a black box (but it shouldn’t be)
• Consists of:

Data exploration
Background correction, normalization, summarization
Quality Assessment 

• These are interlinked steps
• Probe intensities rather than expression values are the data 

used.
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Background Correction/Signal 
Adjustment

• A method which does some or all of the following:
Corrects for background noise, processing effects on 
the array
Adjusts for cross hybridization (non-specific binding)
Adjust estimated expression values to fall across an 
appropriate range
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Normalization
• Normalization is the process of reducing unwanted 

variation (variation due to technical effects) either 
within or between arrays. It may use information 
from multiple chips.

• Typical assumptions of most major normalization 
methods are (one or both of the following):

Only a minority of genes are expected to be 
differentially expressed between conditions 
Any differential expression is as likely to be up-
regulation as down-regulation (ie about as many 
genes going up in expression as are going down 
between conditions)
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Summarization
• Reducing multiple measurements on the same 

gene down to a single measurement by combining 
in some manner. ie take each of the multiple probe 
intensities for a probeset and derive a single 
number representing probeset expression value.
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Quality Assessment
• Need to be able to differentiate between good and 

bad data. 
• Bad data could be caused by poor hybridization, 

artifacts on the arrays, inconsistent sample 
handling, …..

• An admirable goal would be to reduce systematic 
differences with data analysis techniques.

• Sometimes there is no option but to completely 
discard an array from further analysis. How to 
decide …..
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Whats RMA?
• Robust Multi-array Analysis

Background correction using a convolution model 
(GCRMA modifies this stage)
Quantile Normalization across arrays
Multi-array probe-level model fit to each probeset
Quality assessment



10

RMA Background Approach
• Convolution Model
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GCRMA Background 
Approach

• PM=Opm+Npm+S
• MM=Omm+Nmm

• O – Optical noise
• N – non-specific binding
• S – Signal

• Assume O is distributed Normal 
• log(Npm )and log(Nmm ) are assumed bi-variate

normal with correlation 0.7 
• log(S) assumed exponential(1)
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GCRMA Background cont
• An experiment was carried out where yeast RNA was 

hybridized to human chips, so all binding expected to be 
non specific. 

• Fitted a model to predict log intensity from sequence 
composition gives base and position effects

• Uses these effects to predict an affinity for any given 
sequence call this A. The means of the distributions for the 
Npm, Nmm terms are functions of the affinities.
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Normalization
• In case of single channel microarray data this is 

carried out only across arrays.
• Could generalize methods we applied to two color 

arrays, but several problems:
Typically several orders of magnitude more probes on 
an Affymetrix array then spots on a two channel array
With single channel arrays we are dealing with 
absolute intensities rather than relative intensities.

• Need something fast
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Quantile Normalization
• Normalize so that the quantiles of each chip are 

equal. Simple and fast algorithm.  Goal is to give 
same distribution to each chip.

Target 
Distribution

Original 
Distribution
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Summarization
• Need to take the normalized background corrected 

probe intensities and reduce to sensible gene 
expression measures.

• RMA uses a multi-array model fit to logarithmic 
scale data.
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Parallel Behavior Suggests 
Multi-chip Model
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Also Want Robustness
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The RMA model

where
is a probe-effect   i= 1,…,I
is chip-effect (             is log2 gene 
expression on array j) j=1,…,J
k=1,…,K is the number of probesets

( )( )2log N Bkij kijy PM=

kij k ki kj kijy m α β ε= + + +

kiα

kjβ k kjm β+
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Median Polish Algorithm
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RMA mostly does well in 
practice 

Detecting Differential Expression Not noisy in low intensities

RMA

MAS 5.0
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One Drawback
RMA MAS 5.0

Linearity across concentration. GCRMA fixes this problem
Concentration Concentration
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GCRMA improve linearity
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• See affycomp for more comparisons between RMA, 
GCRMA, MAS5 and many other expression 
measures.

• http://affycomp.biostat.jhsph.edu/

• Assessments shown in this talk are based on 
Affymetrix U95A Spike-in dataset

http://affycomp.biostat.jhsph.edu/
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An Alternative Method for Fitting 
a PLM

• Robust regression using M-estimation
• In this talk, we will use Huber’s influence function. 

The software handles many more.
• Fitting algorithm is Iteratively Re-weighted Least 

Squares with weights dependent on current 
residuals ( )kij

kij

r
r

ψ
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We Will Focus on the 
Summarization PLM

• Array effect model

With constraint
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1
0

I

ki
i
α

=

=∑
Probe Effect

Array Effect
(Expression value)

Pre-processed
Log PM intensity
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Quality Assessment
• Problem: Judge quality of chip data

• Question: Can we do this with the output of the 
Probe Level Modeling procedures?

• Answer: Yes. Use weights, residuals, standard 
errors and expression values.
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Chip pseudo-images
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An Image Gallery

http://PLMImageGallery.bmbolstad.com

“Tricolor”

“Crop Circles”

“Ring of Fire”

http://plmimagegallery.bmbolstad.com/
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NUSE Plots
Normalized
Unscaled
Standard
Errors
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RLE Plots

Relative
Log
Expression

ˆ ˆ ˆ( ) ( )kj kj j kjRLE medβ β β= −
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BioConductor
• Based on the R language
• Approx 160 packages (at 1.8 Release Apr 2006)
• All source code is available
• Microarray data is a major focus, but also currently 

some software for dealing with Mass Spec data, 
Cell Based Assays (Flow Cytometry), with others 
application areas planned and expected.

• http://www.bioconductor.org

http://www.bioconductor.org/
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Installing BioConductor
source("http://www.bioconductor.org/biocLite.R")
biocLite()

• Installs a small (approx 20) subset of the packages
• Additional packages can be installed

biocLite(c(“simpleaffy”,”makecdfenv”))

• This handles all the (inter) dependencies between 
the different packages
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Dealing with Affymetrix Data
• affy – Data structures for storing probe intensity 

data. Supplies RMA, general functionality for 
combining different background, normalization, 
summarization schemes. Basic methods for 
examining probe intensity data.

• affyPLM – Methods for fitting probe level models. 
QC tools.

• gcrma – provides the GCRMA expression measure 
and background correction

• simpleaffy – provides Affymetrix standard QC
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Affymetrix Meta-data 
Packages

• cdfenv packages – contain processed CDF information
• Probe packages – contain probe sequence information
• Annotation packages – contain annotation information 

created using public data repositories 
• eg for u133A chips these would be

hgu133acdf 
hgu133aprobe
hgu133a

• Automatically downloaded and installed on first use.
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Case Study
• Data retrieved from a public repository, GEO
• Data Series GSE2603
• Minn et al (2005) Genes that mediate breast cancer 

metastasis to lung. Nature. 2005 Jul 
28;436(7050):518-24

• 121 HG-U133A microarrays
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Starting up
library(affyPLM)
### loads requisite packages including
### affy, Biobase, gcrma etc
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Reading in the data
abatch.raw <- ReadAffy()

• Reads the all the CEL files in current directory into an R S4 
object known as an AffyBatch

• Note we don’t need to supply the CDF file. Instead a 
processed version of it will get automatically downloaded if 
needed on the first use of that chip type.

• An AffyBatch is an object which can store probe-
intensities, along with meta-data such as phenotypic data, 
for a set of arrays.

• Accessor functions like pm(), mm() allow access to the PM 
or MM probe intensities.

• Other functions can be used to visually examine the data 
…..
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boxplot(abatch.raw)
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hist(abatch.raw)
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MAplot(abatch.raw,plot.method=“smoothScatter”,
which=c(1,56,94,104))
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Mbox(abatch.raw)
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image(abatch.raw[,99])
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Manually Preprocessing
• Background correction
abatch.rmabg<-bg.correct.rma(abatch.raw)
abatch.gcrmabg <- bg.correct.gcrma(abatch.raw)

• Normalization
abatch.norm <- normalize(abatch.raw)

Defaults to quantile normalization, but an
Optional argument can be used to select
an alternative method.
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MAplot(abatch.rawdata, which=c(1,50,75,90), pairs=TRUE,
ylim=c(-2,2), plot.method="smoothScatter")

MAplot(abatch.norm, which=c(1,50,75,90), pairs=TRUE,
ylim=c(-2,2), plot.method="smoothScatter")
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Computing RMA
eset.rma <- rma(abatch.raw)

• The function rma() returns an exprSet (in the 
future this likely to be replaced by the eSet) 
containing RMA values.

• An exprSet stores expression values and related 
meta-data. Many BioConductor functions for high-
level analysis accept these as input.

• gcrma() can be used to get GCRMA values
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boxplot(eset.rma)
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MAplot(eset.rma,plot.method=“smoothScatter”,
which=c(1,56,94,104))
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Other ways to get 
expression measures

• General methods give user control over which pre-
processing steps occur:

threestep()- memory and run time efficient
expresso() – easily extensible by outside users 

but slower and generally consumes much more 
memory
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Carrying out QC 
Assessment

Pset <- fitPLM(abatch.raw)

• A PLMset object is the return value of fitPLM(). It 
stores parameter estimates and their standard 
errors. Also residuals and weights from the IRLS 
procedure.
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NUSE(Pset)
NUSE(Pset,type=“stats”) # get median/IQR
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RLE(Pset)
RLE(Pset,type=“stats”) # get median/IQR
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image(Pset,which=99)
image(Pset,which=99,type=“resids”)

image(Pset,which=99,type=“pos.resids”)
image(Pset,which=99,type=“neg.resids”)
image(Pset,which=99,type=“sign.resids”)
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Future Developments
• oligo – a package supporting low-level analysis of 

SNP, tiling and expression arrays
• BufferedMatrix – R tools for dealing with extremely 

large data objects outside main memory
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Supplemental Material
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Affymetrix GeneChip
• Commericial mass produced high 

density oligonucleotide array 
technology developed by Affymetrix 
http://www.affymetrix.com

• Single channel microarray
• Todays talk relates to arrays 

designed for expression analysis

Image courtesy of Affymetrix Press Website.

http://www.affymetrix.com/
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Probes and Probesets

Typically 11 probe(pairs) in a probeset
Latest GeneChips have as many as:
54,000 probesets

1.3 Million probes
Counts  for HG-U133A plus 2.0 arrays
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Two Probe Types

TAGGTCTGTATGACAGACACAAAGAAGATG

CAGACATAGTGTCTGTGTTTCTTCT

CAGACATAGTGTGTGTGTTTCTTCT

PM: the Perfect Match

MM: the Mismatch

Reference Sequence

Note that about 30% of MM probe intensities are brighter than 
corresponding PM probe intensities.
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Hybridization to the Chip
Sample of Fragmented 
Labeled RNA

Labeling molecule that fluoresces
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The Chip is Scanned
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Image Analysis
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Chip dat file – checkered board – close up pixel selection
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Chip cel file – checkered board

Courtesy:  F. Colin
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Boxplot raw intensities

Array 1 Array 2 Array 3 Array 4
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Density plots
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Comparing arrays
Array2 

vs 

Array 1

Bad
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Comparing arrays
Log2 Array2 
vs 
Log2 Array 1

Better
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Comparing arrays
M = log2(Array2/Array1)

Vs 

A = ½ log2(Array2*Array1)

Best

M= Minus
A=Average 
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Typical MA-plot

Loess smoother
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Pairwise MA plots
Array 1

Array 2

Array 3

Array 4

M=log2arrayi/arrayj
A=1/2*log2(arrayi*arrayj)
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Boxplots comparing M

Array 1 Array 2 Array 3 Array 4

M
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It works!!
Unnormalized Scaling

Quantile 
Normalization

This is probe intensity data for two chips hybridized 
using same sample pool but scan on different scanners.
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It Reduces Variability
Fold change for
Non differential genes

Expression Values

Also no serious bias effects. For more see Bolstad et al (2003)

Unnormalized Quantile Scaling

Unnormalized Quantile Scaling
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Summarization
• Problem:  Calculating gene expression values.
• How do we reduce the 11-20 probe intensities for each 

probeset on to a gene expression value?
• Our Approach

RMA – a robust multi-chip linear model fit on the log scale
• Some Other Popular Approaches

Single chip
AvDiff (Affymetrix) – no longer recommended for use due to many 
flaws
Mas 5.0 (Affymetrix) – use a 1 step Tukey-biweight to combine 
the probe intensities in log scale

Multiple Chip
MBEI (Li-Wong dChip) – a multiplicative model on natural scale
PLIER (Affymetrix)
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General Probe Level Model

• Where f(X) is function of factor (and possibly 
covariate) variables (our interest will be in linear 
functions)

• is a pre-processed probe intensity (usually log 
scale)             

• Assume that

f( )kij kijy ε= +X

E 0kijε⎡ ⎤ =⎣ ⎦
2Var kij kε σ⎡ ⎤ =⎣ ⎦

kijy
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Probe Pattern Suggests 
Including Probe-Effect
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Variance Covariance 
Estimates

• Suppose model is 
• Huber (1981) gives three forms for estimating variance 

covariance matrix

Y X β ε= +

( ) ( ) ( )2 1 11 1/ T
i

i
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We will use this form
'TW X X= Ψ
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Normalization
“Non-biological factors can contribute to the variability of data ...

In order to reliably compare data from multiple probe arrays, 
differences of non-biological origin must be minimized.“1

• Normalization is the process of reducing unwanted variation 
either within or between arrays. It may use information from 
multiple chips.

• Typical assumptions of most major normalization methods 
are (one or both of the following):

Only a minority of genes are expected to be differentially 
expressed between conditions 
Any differential expression is as likely to be up-regulation as 
down-regulation (ie about as many genes going up in 
expression as are going down between conditions)

1 GeneChip 3.1 Expression Analysis Algorithm Tutorial, Affymetrix technical support
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Non-Biological variability is a 
problem

5 scanners  for 6 dilution groups
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RMAExpress

• http://rmaexpress.bmbolstad.com
• Implemented in C++. Open source.
• Compiled builds supplied for Windows users. Source code 

for Unix users. Cross-platform

http://rmaexpress.bmbolstad.com/
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